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Abstract—5G networks, as an emerging technology, calls for
novel solutions to several research problems, many of them
having in focus a better usage of sparse spectrum capacity. In
the attempt to leverage spectrum, additional unlicensed band,
available for wireless technology, is combined with the licensed
part of the spectrum, managed by traditional mobile providers,
thus making a heterogeneous network environment of Primary
Networks (PNs). In such an environment desirous users (i.e.
Secondary Users (SU)) equipped with multiple radio access
technology are able to select the appropriate network considering
not just interference, but other parameters as well (e.g. QoS, data
rates, prices etc.).

We consider the architecture with central Cognitive Network
Provider (CNP) and several heterogeneous PNs, in which SUs are
contending for empty channels in one of the PNs that best suit
their needs for bandwidth, data rate and price. Applying cognitive
radio network principles leads to the well-known problem of
Network Selection and Channel Allocation. CNP has to solve
this NP-hard problem by considering equally the demands of
the heterogeneous PNs as well as the best interest of SUs.

In this paper we propose two different bi-objective models
and solve them by generating their non-dominated points. First
model allocates SUs to networks with respect to costs, target
interferences, and data rate capacities; while the second model
splits PNs in channels, and allocates SUs to channels with respect
to their additional demands for low latency. We generate the
efficient sets of the instances found in the literature; and compare
our results with the existing results obtained by the nature
inspired meta-heuristic approaches.

Index Terms—channel allocation, network selection, 5G het-
erogeneous networks, optimization

I. INTRODUCTION

The appearance of Internet of Things (IoT) inspired diverse
forecast based on increasing the both number and variety
of further applications (see [5], [6], [7]). As an answer to
foreseen demand in bandwidth and speed of communication,
mobile networks start to transform their main set of standards
used to provide coverage, toward new ones that are able to
provide enough speed and capacity for future networks. These
processes are leading to work on novel solution/standard for
5G networks.

So far, the multi-tier architecture is adopted as a solution
at different places in the network (see [12]). In RAN (Radio
Access Network) the macro-cell stays in the top-tier and
the small-cell appears in the lower tier, enabling dramatical
enhancement at RAN, and trying to achieve a noticeable

improvement in three directions: spectrum extension, spectrum
efficiency and network densification (see [1]).

In attempt to achieve a spectrum extension, an additional
spectrum for 5G networks – that is available mainly above
3GHz and is suitable for short-range wireless technology –
has to be combined with the licensed part of the spectrum,
managed by traditional mobile providers, thus making a het-
erogeneous network environment (5G HetNets). In such an
environment, a lot of attention is put on dynamic spectrum
access/sharing – the technology that enables it, i.e. cognitive
radio; and algorithms that are required for a dynamic assign-
ment of available resources.

As it is traditionally recognized, the cognitive radio provides
the capability to use opportunistically the available portions of
a licensed spectrum intended for licensed (primary) users in
order to improve the application performance for unlicensed
(secondary) users (see [2]). This is a widely studied subject.
Taxonomy, open issues, and challenges related to channel
assignment algorithms in cognitive radio networks can be
found in [2]. Diverse approaches, as overlay, underlay, co-
ordinated, non-coordinate are described in the literature (see
[4], [10]), and applied under several architectures. The attempt
to achieve a better performance by trying to control/combine
the ISO/OSI L1/L2 parameters (as interference, data rate,
transmission power) when selecting the transmission channel
for/by the secondary users is common to the most of them. But,
it seems that well known cognitive radio approaches should be
combined both in a new way and with the other functionalities
in 5G, in order to achieve a better spectrum efficiency in 5G
[12].

Finally, network densification is the name for the energy-
efficient dense deployments of radio access concept, achieved
by a small cell.

A user equipped with multiple radio access technology are
able to join one of surrounding networks. So, the problem
of how to select an appropriate network for/by a user arises
in a small cell as well as in a macro-cell. A huge difference
is made by the number of users that appear in a small cell
(between a few and 100) compared to the number of users
that can appear in a macro-cell (about few thousands). There
are several approaches regarding the mathematical modeling
for network selection in heterogeneous wireless networks,



analyzed in [13] with respect to objectives, the speed of
making decision, implementation complexity, precision and
whether they are decentralized, user-centric, mobility-oriented
or traffic-oriented.

Cloud-based architectures or cloud-based radio accessed
networks (C-RAN) for 5G split their data-plane (D-plane)
from control-plane (C-plane), thus enabling the consideration
of diverse requirements when making decision on which
network the mobile users should join, or which transmission
channel should be selected [12]. Such architectures demand
an integration of the requirements coming from L1/L2 of
ISO/OSI (interference, power transmission control, bandwidth
allocation), and requirements related to congestion condition at
L3 and above (data rate, latency/delay); with the requirements
coming from beyond the ISO/OSI (price policy of different
mobile/cognitive providers in 5G).

In the literature there are many examples of attempts to
model cognitive behavior considering both the requirement
of parameters related to L1/L2, and pricing separately. For
example, the pricing issue in the cognitive small cell network
is studied in [9], where the authors proposed an optimal pricing
strategy for mobile/service operators. Later on, two attempts
were made to model the network selection in cognitive radio
HetNets considering minimization of interference with mini-
mization of the price for users under the constraints of price
that each user is willing to pay for delivered data rate. In
[8] a model with a single criterion function is introduced,
and solved with GA and PSO heuristic, while in [11] one
more criterion is added to maximize the data rate achieved
by all users who made an allocation. This model is solved
by FLACSA heuristic, i.e. a fuzzy logic ant colony system
algorithm.

As we see it, because of a cellular paradigm shift happened
in several ways, according to [3], the new attempts should be
made to reconsider the analysis of cognitive radio techniques
under new conditions and in aim/direction to integrate well-
known requirements with new one, having in mind the request
for “zero latency” at the first place.

In this paper we describe the model for channel allo-
cation/network selection in HetNets. We use a centralized
authority, that gets advantage on D-plane/C-plane split ar-
chitecture, for being able to collect information about the
network condition and users requirements from both RAN
and cloud. Regarding SUs requirements, we tried to include all
considerations that are important for the practical deployment,
having in mind HetNets impact on the changes on metric
and cell association and recommendations (see [3]) to stop
measuring the performance only with the bit error rate (BER)
or signal-to-interference-plus-noise-ratio (SINR) distribution
(due to their strong correlation with the low level rate and qual-
ity of service (QoS) achieved by the users), and instead, to start
use of the rate distribution (user-perceived) as more relevant
metric. The cell association is based on diverse requirements,
both technical and economic, considered as equally important,
because the customers are willing to pay for the provisioned
service, and the user’s experience/satisfaction with the service

depends mainly on the application-level/related to the QoE
(Quality of Experience) instead of QoS. As it is explained in
[1], the “... QoE describes the subjective perception of the
user as to how well an application or service is working.
QoE is highly application – and user – specific and cannot
be generalized. Despite the diversity of QoE requirements,
providing low latency and high bandwidth generally improves
QoE”. Finally, the 5G technology is expected to support an
ultra-low latency in order to be able to provide a range of
real-time applications like tactile Internet, as shown in [12].

Our approach differs from previous work in few key aspects.
First, we recognized the two categories of users/applications
needs, i.e. needs for data hungry applications for more band-
width/data rate, and needs to provide the low latency/delay for
sensitive applications. Second, our aim is to solve the network
selection multiple objective problem, though it is NP−hard.

The remainder of the paper is organized as follows: in
Section 2 the channel allocation problem in 5G networks is
explained in details. Section 3 describes the multiple objective
model that we propose for solving the given problem. This sec-
tion also outlines the technique for deriving efficient solutions
to the formulated model. Experimental results are presented
in Section 4. Finally, in Section 5 we offer conclusions and
ideas for further work.

II. CHANNEL ALLOCATION PROBLEM IN 5G NETWORKS

We considered a two-tier network architecture in Radio
Access Technology layer with small cell that provides ca-
pacity, and macro-cell that provides basic connectivity and
coverage. The resource allocation in a small cell is centrally
coordinated by a common authority, namely the Cognitive
Network Provider (CNP). The CNP is aware of the status
of the heterogeneous network (HetNets) environment, that
consists of N primary networks (PN), each of them providing
services to its users, i.e. to primary users (PU). It is supposed
that the whole portion of the spectrum of one PN is not
entirely occupied all the time by its PUs. So, that portion of
PN’s spectrum, left empty after the fulfillment of the needs
of its PUs, is temporary available for those users which do
not belong to that PN, namely for the secondary users (SU).
The temporarily unused spectrum of one PN is expressed in a
number of temporary available channels in that PN. It is clear
that the number of the temporary available channels in each of
PNs (let us denote it Omax) depends to a great extent on the
behavior of its PUs. We may suppose that this number does not
exceed the maximum number of available channels for each
PN (denoted by Omax

k , k ∈ {1, . . . , N}). Thus we compute
Omax = max

k∈{1,2,...,N}
Omax

k . Then, the pool of maximum

N ×Omax channels is available to M secondary users (SU),
for an opportunistic use according to their requirements.

Considering the huge wireless paradigm shift brought by 5G
HetNets, and its impact on practical deployment (see [1], [3]),
we conclude that SUs requirements can be specified in terms of
data rate (di), latency (τ i), and price (pi) reasonable to be paid
to the CNP for the requested service, where i ∈ {1, ...,M}
is an index of SU. We assume that each SU can dynamically



determine/measure two performance measures (data rate, and
latency) and send them to the CNP when enters the system,
or whenever it attempts to improve its QoE.

We also assume that the CNP can support the following two
categories of the end users according to their requirements.
One category consists of users with common requirements for
data rate. The users/applications from another category differs
in their needs for low or near zero latency. In order to enable
a low latency service in HetNet environment, they must be
encompassed: the users that request such service; the PNs that
may provide low latency condition on some of their channels;
and the price policy for the provided service.

The latency τ i, demanded by the i−th user, is equal to
12 if the i−th user does not need the low latency service;
or otherwise it represents the maximal demanded/accepted
value. The service will be provided to the user if there is
a temporarily available channel, able to deliver the specified
low latency or smaller, in any of the PN networks. Otherwise,
a channel will not be allocated to user at all.

Each available channel j = {1,..., N×Omax}, in any of the
PNs, is described in terms of its maximal capacity/bandwidth
(cj), latency (tj), and the level of interference (hij) created
when i-th SU joins it. As the channels at higher frequency
bands operate in short distance providing high data rate trans-
mission with lower latency (compared to the low frequency
channels/bands), we suppose that the interference of SUs that
use the low latency channels can be neglected, whether they
request or not low latency service. Consequentlly, when j-th
channel is able to support low latency, hij is set to zero, for
all i, i.e all SUs.

Finally, we assume that there are two price policies one for
each of the two categories of the end users. The first one is
denoted by fik, and it represents the amount that i−th SU
have to pay for common/data rate service in k−th PN. The
second one is denoted by gik, and it represents the amount
that i−th SU have to pay in addition for low latency service
in k−th PN.

We considered a few possible objectives to direct the process
of available channel allocation to SUs in HetNet. Traditionally,
one objective is to minimize the interference created by SUs.
The second one is to minimize the cost paid by SUs for both
categories of users requirements.

The set of feasible solutions is defined by a set of constrains.
First, unique allocation should be established, so that a user
can access only one of available channels in any PNs, and each
channel can be allocated to just one user. Second, the value of
the cumulative interference of all SUs using channels in the
same PN should not exceeded the interference threshold εk ,
defined for the k−th PN. The rest of conditions ensure that
a channel can be allocated to a user if and only if it satisfies
the user’s requirements in terms of data rate, low latency and
price.

III. SOLVING THE CHANNEL ALLOCATION PROBLEM

There are different approaches in the literature for solving
the Channel Allocation Problem. In this paper we propose two

different bi-objective models and solve them by generating
their non-dominated points. First model allocates SUs to
networks with respect to costs, target interferences, and data
rate capacities; while the second model splits PNs in channels,
and allocates SUs to channels with respect to their additional
demands for low latency.

A. Optimization models

We start from a basic model, that is applied when the
CPN does not provide any low latency service because neither
any SU is requesting the service nor any temporary available
channel in any of the PN networks exists. In such a case the
bi-objective is to minimize both the accumulative interference
and cost. We compare this model to the model introduced in
[8], and solve the same scenarios.

Given N primary networks, that are the components of 5G
heterogeneous network, and M secondary users, that are not
subscribed users but request access to enter the 5G network
through CNO, we use the following notation:
• Parameters for primary network:

– Cmax
m , the maximum capacity in bps per channel in

the primary network m, for each m = 1, 2, . . . , N ;
– εm, interference threshold, i.e. target interference in

the primary network m, for each m = 1, 2, . . . , N ;
• parameters for secondary users requirements and prefer-

ences:
– dj , the data rate (in bps), for each j = 1, 2, . . . ,M ;
– pj , the price that secondary user j is willing to pay,

for each j = 1, 2, . . . ,M ;
• a parameter for SU’s interference to PUs of a particular

network PN
– hjm, interference of j−th SU on primary users in
m−th primary network, for each j = 1, 2, . . . ,M ,
and m = 1, 2, . . . , N ;

• auxiliary parameter
– fjm, the amount that j−th SU have to pay for using

the primary network m, m = 1, 2, . . . , N .
• binary decision variables

– xjm, that is set to 1 if the j−th SU is assigned to
the m−th network, and to 0 otherwise, for each j =
1, 2, . . . ,M , and m = 1, 2, . . . , N .

Then, the basic proposed model in the algebraic form is:

min Q1 (x) =
M∑
j=1

N∑
m=1

hjmxjm

min Q2 (x) =
M∑
j=1

N∑
m=1

fjmxjm

subject to
N∑

m=1
xjm = 1, j = 1, 2, ..M,

M∑
j=1

hjmxjm ≤ εm, m = 1, 2, ..N,

djxjm ≤ Cmax
m , j = 1, 2, ..M, m = 1, 2, ..N,

fjmxjm ≤ pj , j = 1, 2, ..M, m = 1, 2, ..N.

(1)



TABLE I
THE NUMERICAL RESULTS OBTAINED FOR SCENARIOS 1 AND 2, USING

THE SINGLE-OBJECTIVE MODEL FROM [8]

Algorithm
Scenario 1 Scenario 2
Q1 Q2 Q1 Q2

GA [8] 15 540 16 580

PSO [8] 20 700 18 610

Optimal 13 530 15 560

TABLE II
THE NON-DOMINATED POINTS OBTAINED FOR SCENARIOS 1, 2, 3 AND 4

USING THE BI-OBJECTIVE MODEL (1)

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

12 550 12 580 13 805 14 710
13 530 13 570 14 785

15 560

The optimization model introduced in [8] has a single
objective function that corresponds to the aggregation Q1+Q2,
and the same constraints as in Model (1). In our opinion,
Q1+Q2 is not a very useful aggregation, since Q1 and Q2 are
of different order of magnitude and have different measuring
units. Without a proper normalization, the result of such
optimization will never assure a good compromise between
interferences and costs in the system (see the numerical results
presented in Section IV).

In order to improve Model (1), we consider directly the
networks channels instead of the networks themselves (having
in mind that two channels of the same network may differ
with respect to the capacity, latency, interference etc); and
we consider two categories of secondary users: those that are
willing to pay for data rate, and those that are willing to pay
for low/zero latency. The new parameters are:

• N , the set of networks;
• U , the set of users;
• C, an indexed set of channels, such that
• C (k) is the set of channels that belong to the network
k, for each k ∈ N ;

• hij , the interference of i−th SU when joining the j−th
channel, for each i ∈ U , j ∈ C;

• fik, the amount that i-th SU have to pay for data rate
when joining the primary network k, for each i ∈ U and
k ∈ N (in fact, i−th user joins the j−th channel, that
belongs to the network k = m (j), where m (j) is the
function that maps each channel j to its network k);

• gik, the amount that i-th SU have to pay for low latency
when joining the primary network k, for each i ∈ U and
k ∈ N ;

• pi, the price that secondary user i is willing to pay, for
each i ∈ U ;

• τi, the latency demanded by the i−th user (it is equal to
12 if the i−th user does not want to pay for low latency);

• tj , the latency on channel j, for each j ∈ C;

• di, the data rate (in bps) for i-th SU, for each i ∈ U ;
• cj , the maximum capacity (in bps) of the j−th channel,

for each j ∈ C.
The new binary decision variables are xij , i ∈ U , j ∈ C, that
are set to 1 if the i−th SU uses the j−th channel, and to 0
otherwise. The new mathematical model is

min Q1 (x) =
∑
i∈U

∑
j∈C

hijxij

min Q2 (x) =
∑
i∈U

∑
j∈C

(
fim(j) + gim(j)

)
xij

subject to

∑
j∈C

xij = 1, ∀i ∈ U,∑
i∈U

xij ≤ 1, ∀j ∈ C,∑
i∈U

∑
j∈C(k)

hijxij ≤ εk, ∀k ∈ N,

tixij ≤ τj , ∀i ∈ U, ∀j ∈ C,
dixij ≤ cj , ∀i ∈ U, ∀j ∈ C,∑
j∈C

(
fim(j) + gim(j)

)
xij ≤ pi, ∀i ∈ U,

xij ∈ {0, 1} , ∀i ∈ U, ∀j ∈ C.

(2)

The complexity of Model (2) may be reduced significantly
if, for each secondary user i ∈ U , we define the set
Li of the channels with feasible capacity and latency, i.e.
Li = {j ∈ C| (di ≤ cj) ∧ (τi ≥ tj)}. These sets Li, i ∈ U
are evaluated in the preprocessing step, thus simplifying the
optimization process. In this case, the final model is

min Q1 (x) =
∑
i∈U

∑
j∈Li

hijxij

min Q2 (x) =
∑
i∈U

∑
j∈Li

(
fim(j) + gim(j)

)
xij

subject to

∑
j∈Li

xij = 1, ∀i ∈ U,∑
i∈U

xij ≤ 1, ∀j ∈ C,∑
i∈U

∑
j∈C(k)∩Li

hijxij ≤ εk, ∀k ∈ N,∑
j∈Li

(
fim(j) + gim(j)

)
xij ≤ pi, ∀i ∈ U,

xij ∈ {0, 1} , ∀i ∈ U, ∀j ∈ Li.

(3)

B. Solving approach

In multiple objective optimization problems there is no
single optimal solution that simultaneously optimizes all the
objective functions. The decision maker wishes to find a
solution that assures a good trade-off between objectives. In a
priori methods the decision maker expresses his preference
information before the optimization process. As a conse-
quence, the derived solution is the final solution. A posteriori
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TABLE III

SU’S SPECIFIED REQUIREMENTS FOR DATA RATE, LATENCY AND PRICE FOR SCENARIOS 3 AND 4

Users Indexes for SUs
requirements 1 2 3 4 5 6 7 8 9 10 11 12

Latency (τi) 12 12 12 2 12 12 12 2 12 12 2 10

Price
Scenario 3 100 100 100 150 100 100 100 150 100 100 150 100
Scenario 4 80 75 70 120 60 150 60 110 55 95 120 170

TABLE IV
MAXIMAL CAPACITY (IN BPS) / LATENCY (IN MS) SEPARATELY PER

CHANNELS FOR SCENARIO 5

k
Channels

1 2 3 4 5 6 7
1 80/3 20/1 80/2 80/50 80/50 40/50 80/50

2 70/10 70/10 70/2 70/2 50/10 70/1 70/10

3 70/10 70/3 70/5 70/10 70/2 70/10 70/10

4 90/30 60/4 90/5 90/1 90/1 90/30 90/30

5 100/7 100/2 70/3 100/7 100/1 100/7 100/1

6 70/10 70/50 70/10 70/7 70/50 70/50 70/5

7 60/5 60/70 60/4 60/70 60/1 60/2 60/70

TABLE V
PNS POLICIES IN TERMS OF LATENCY AND ADDITIONAL FEES FOR

SCENARIOS 3 AND 4

Parameters
Primary networks

1 2 3 4 5 6 7
Latency 10 10 10 1 1 10 10

Additional fees 0 0 0 40 40 0 10

approache provides a set of non-dominated points (if not the
entire Pareto front) to the decision maker that chooses one of
them, the one that satisfies the best his preferences.

We use the ε−constraint method to solve Models (1) and
(3). This method is one of the most convenient a posteriori
approaches in the case of bi-objective optimization problems.
The general idea of this approach is to keep optimizing one of
the objectives; and restrict all the other objectives within some
specified values. Thus, in the bi-objective case the problem

min Q1 (x) ,

min Q2 (x) ,

s.t. x ∈ X,

TABLE VI
PNS POLICIES IN TERMS OF TARGET INTERFERENCE THRESHOLD AND

SUBSCRIPTION FEES FOR SCENARIO 5

Parameters
Primary networks

1 2 3 4 5 6 7
Price for data rate 80 60 65 60 70 40 50

Price for low latency 20 30 10 40 40 50 10

Interference threshold 7 6 7 10 19 15 9

is replaced by

min Q1 (x) ,

s.t. x ∈ X,
Q2(x) ≤ ε.

Varying the value of ε, distinct non-dominated points are ob-
tained. The main advantage of this method is that any efficient
solutions can be obtained, thus it can be successfully used for
non-convex optimization problems. The solution to the multi-
objective problem essentially depends on the selection of the ε
values. In particular, any ε value must be chosen between the
minimum and maximum value of the corresponding objective
function. When the number of the objectives increases, more
information from the decision maker is required, and the
applicability of the approach becomes cumbersome.

IV. EXPERIMENTAL RESULTS

In order to test our approach we first recall the example
given in [8] and use Model (1) to solve it. The experiments
reported in [8] were performed under two scenarios using
different data sets. The main difference between scenarios is
the price that SUs are willing to pay to the Cognitive Network
Operator (CNO). In Scenario 1, each SU can join any network
because it is ready to pay more than the maximum cost of
joining any primary network. On the other side, in Scenario
2, a SU may be unable to join a network due to the cost
constraints. The information about the parameters of both PNs
and SUs for Scenarios 1 and 2 can be found in [8].

The numerical results reported in [8] are shown in Table I
together with the exact values for the optimal interference and
accumulative price for Scenarios 1 and 2 obtained using the
single-objective model introduced in [8]. As expected, since
the problem size is quite small, the exact solution of the
optimization problem can be obtained directly, and in short
time (about 0.03 seconds).

Table II shows the non-dominated points obtained using
Model (1). As expected, the optimal value of the objective
function in the model introduced in [8] is equal to the non-
dominated point with minimal price for both Scenarios 1 and
2. This is due to the lack of normalization in model [8], where
the accumulative price and interference were summed with
equal weights despite the different orders of magnitude and
measuring units.

We also performed additional experiments using Model (3),
that involves channels instead of networks.



TABLE VII
SU’S SPECIFIED REQUIREMENTS FOR DATA RATE, LATENCY AND PRICE FOR SCENARIO 5

User Indexes for SUs
requirements 1 2 3 4 5 6 7 8 9 10 11 12
Data rate (bps) 50 70 70 20 60 40 50 40 50 60 40 40

Low latency 12 12 12 12 12 12 1 2 12 12 5 10

Price 180 175 170 120 160 150 160 110 155 195 120 170

TABLE VIII
INTERFERENCES hij FOR SCENARIO 5

Channel (j)
Indexes for SUs

1 2 3 4 5 6 7 8 9 10 11 12
j ∈ 1, 7 2 2 4 3 1 2 1 4 3 1 3 2
j ∈ 8, 14 1 1 1 2 3 2 2 1 3 1 1 2
j ∈ 15, 21 3 2 1 2 3 1 1 2 1 2 1 1
j ∈ 22, 25 1 4 3 2 2 3 1 1 1 2 1 1
j ∈ {26, 27} 0 0 0 0 0 0 0 0 0 0 0 0
j = 28 1 4 3 2 2 3 1 1 1 2 1 1
j ∈ 29, 32 2 2 1 2 1 2 1 2 3 1 1 2
j ∈ {33, 34} 0 0 0 0 0 0 0 0 0 0 0 0
j = 35 2 2 1 2 1 2 1 2 3 1 1 2
j ∈ 36, 42 1 2 1 4 1 2 2 1 1 1 2 1
j ∈ 43, 49 2 1 3 4 1 1 2 1 3 3 3 2

Since neither in Scenario 1 nor in 2, users did not request
latency service we created Scenarios 3 and 4, where three
users (i ∈ {4, 8, 11}) request to have access to a network that
is able to provide 2 ms latency or lower. Each user is willing
to pay additional price (the same, 50 in Scenario 1, and 30,
35, 20 respectively in Scenario 4) for this service. There are
also two PNs out of seven providers that can guarantee 1ms
latency on their channels, and requesting additional price of
40 for this service. The additional parameters for Scenarios 3
and 4 are shown in Tables V and III.

Comparing the numerical results obtained for Scenario 3 to
the solution obtained for Scenario 1, we may notice that, as
expected, the total price increased (due to the bigger price
payed by the users that demanded low latency); and the
total interference also increased (since the allocation made for
Scenario 1 does not fulfill the low-latency constraints, thus it
is not feasible anymore). Something similar may be concluded
comparing Scenario 4 to Scenarios 1 and 2. For Scenario 4
ideal values, i.e. optimal for both criteria, were found. All non-
dominated points for each scenario were obtained exactly, in
less than 1 second.

We also created Scenario 5, were channels in PNs have
different parameters, thus various offers are made available to
SUs. The parameters are reported in Table VI (where channels
are indexed from 1 to 7 for each PN separately), Table VII
and Table VIII (where channels are indexed from 1 to 49).
All 10 non-dominated points were found in 0.832 seconds.
The non-dominated points are shown in Table IX.

The experiments were conducted on Intel® Core™ i3 at
1.80GHz and 8GB RAM. For optimization we used GLPK

(GNU Linear Programming Kit) version v4.61.

V. CONCLUSION AND FUTURE WORK

In this paper, we studied network selection and channel
allocation problem in 5G HetNets, where the resource allo-
cation in a small cell was centrally coordinated by a common
authority of Cognitive Network Provider (CNP). We proposed
two different bi-objective models. First model allocated SUs
to networks with respect to costs, target interference, and data
rate capacities; while the second model split PNs in channels,
and allocated SUs to channels with respect to their additional
demands for low latency.

We solved both models for 5 scenarios using ε−constraint
method thus generating their efficient solutions, that consisted
of a range form 1 to 10 non-dominated points for Scenario 4
and Scenario 5, in a time frame range from 16ms to 832ms.
Obtained results showed that the zero/low latency demand
should be combined with a resource reservation algorithm
rather than an on-demand resource allocation algorithm.

The proposed model can be extended gradually in twofold:
defining one more criterion imposed by CNP leading to three-
criterion model; or adding more granular control in each of
the criterion function (i.e PN, SU or CNP oriented) leading to
a fractional form of the problem.

This work can be a basis for further integration of the
requirements of the primary networks and users, and an
attempt of the provider to improve the quality of experience
(QoE) generally by minimizing the overall latency/delay for
users in small cell. The decision made at this level of small
cells could be part of a wider multi step decision-making



TABLE IX
NON-DOMINATED POINTS (INTERFERENCE / PRICE) OBTAINED FOR SCENARIO 5

Q1 (accumulative interference) 17 16 15 14 13 12 11 10 9 8

Q2 (accumulative cost) 825 835 850 860 875 890 910 940 960 990

framework. It is expected that various application of future
5G technology will have different requirements, some of them
being preprocessed/anticipated before users enter under the
coverage of small cell.
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