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Preface

by Professor Dr. Adelina Georgescu, ROMAI President

This volume contains part of the papers presented at the Conference on Applied and Industrial
Mathematics (CAIM) held in Oradea in the period May 29-31, 2003. CAIM 2003 represents the
eleventh edition of the annual scientific meetings coorganized by Romanian Society of Applied and
Industrial Mathematics (ROMAI) and some university. Starting with 1993, the CAIMs were held in
Oradea (1993, 1994), Oradea and Chisinau (1995, 1996, 1997) and they were coorganized by ROMAI
and Univ. of Oradea (UQ), the Technical University of Tiraspol (TUT), Technical University of Moldova
(TUM) and Institute of Mathematics and Computer Science of Academy of Sciences of Moldova (IMCS-
ASM). In 1996, the Chisinau Session of CAIM was held in the framework of Symposium Septium
Tiraspolense. The organization was possible thanks to the generous involvement of the Professor Dr.
Teodor Maghiar (Rector), the late Professor Dr. Gheorghe Nadiu and his young group of the Dept.
of Mathematics (UO): Ioan Dzitac, Valerian Tibu, Ioan Fechete, Aurel Caus, Emil Schwab, Emilia
Borsa, Marian Degeratu; the late Professor Petru P.Osmatescu (TUM), Academician Mitrofan Ciobanu
(TUT, actually Rector), Academician Mefodie Rata (IMCS-ASM), Professor Dr. Constantin Gaindric
(Director, IMCS-ASM), Professor Dr. Mihail Popa (Vicedirector, IMCS-ASM), Professor Dr. Dumitru
Botnaru (TUM) and their young collaborators, Professors Laurentiu Calmutchi and Liubomir Chiriac
(TUT).

In the early years 90, to publish the proceedings was a courageous action. Indeed, by that time, the
sheets of papers and copiators were rare and their price was high, beyond the possibilities of ROMAL.
However, UO or members of ROMAI themselves (e.g. Professors Carmen Rocsoreanu and Nicolae
Giurgiteanu) supported the costs for the proceedings, ensuring their in time publication. In spite of
their poor graphical quality, these proceedings attested that the scientific life in Romania goes on
without interruptions and its level is very high, even if it was achieved with important sacrifices. The
papers published in CAIM Proceedings were used, among others, for validation of PhD degrees or for
promoting scientific and didactical degrees for their authors.

In the course of time it was more and more evident that the main directions of interest for CAIM
participants were firstly: analytical and numerical methods in mechanics, aviation, naval hydrody-
namics, meteorology, hydrology, physics; algebra, logic and topology and subsequently: finite- dimen-
sional dynamical systems (y compris fractals and deterministic chaos), applied computer science, edu-
cation. These directions were the fields of expertise of participants in various branches of mathematics,
physics, engineering, biology, economics, computer science (mainly universitary professors and research
workers) from: the Institute of Applied Mathematics (IMA, Bucharest), Institute of Mathematics
(Chisinau, Bucharest), National Institute for R&D in Material Physics (Bucharest), National Institute
for Optoelectronics (Bucharest), Institute of Microtechnology (Bucharest), Institute for Solid Mechanics
(Bucharest), Institute of Aviation (Bucharest), Institute for Computer Science (Iasi), Research and De-
sign Institute for Shipbuilding (ICEPRONAV, Galati), Institute for Nuclear Research (Pitesti-Mioveni),
Institute of Physics and Nuclear Engineering (Bucharest), Academy of Economical Studies (Chisinau,
Bucuresti), Centre of Mathematical Statistics (Bucharest),Institute of Fundamental Technological Re-
search (Warsaw); universities of: Timisoara, lasi, Bucharest, Craiova, Cluj-Napoca, Oradea, Pitesti,
Brasov, Alba Iulia, Arad, Chisinau, Tiraspol, Spiru Haret Univ. (Craiova), Oxford (England), Ibaraki
Univ. (Japan), Nihon Univ. (Japan), Le Havre (France), Bari (Italy), Belgrade (Serbia and Mon-
tenegro), Galati, Petrosani, Baia Mare, Targoviste, Targu Mures, Cosice (Slovakia), Siedlce (Poland),
Kaiserslautern (Germany), Moscow, Ulianovsk (Russia), Tashkent (Uzbekistan), Tokyo (Japan), Mon-
treal (Canada), Paris XII (France), Constanta, Balti, Targu Jiu, Drobeta Turnu Severin, Olomouc
(Czech Republic), Athens, Patras (Greece), Leeds (England), Porto (Portugal) and other institutions
from: Chisinau, Pitesti, Mioveni-Arges, Curtea de Arges, Koln (Germany), Bucharest, Craiova, Ram-
nicu Valcea, Sinaia, Cluj-Napoca, Sibiu.

Among them, the strong group of ROMAI members from IMA, Chisinau, Tiraspol, Craiova and,
later, Pitesti, configurated the specificity of ROMAI and its CAIMs versus other groups of applied
mathematicians and conferences really active in Romania: the group of numerical analysis and optimal
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control at Constanta, and the groups of Baia Mare and Timisoara. Also at Chisinau, in 2001, ROMAI
members from Republic of Moldova leaded by Academician Mitrofan Ciobanu organized a very good
conference where the applied and industrial mathematics was well represented. From the Organizing
Committee we quote Parascovia Sirbu and Florin Damian. A special mention is deserved to the fact
that the ROMAT branch from Republic of Moldova organized at Chisinau a duplex session with UO in
2001.

The next five CAIMs were held in Pitesti (1998, 1999, 2000, 2001) and in Pitesti and Mioveni-Arges
(2002). They have been coorganized by ROMAI and Univ. of Pitesti (UP) and the Local Council
and the Cityhall of Mioveni-Arges. In their organization the precious support of Professor Dr. Gheo-
rghe Barbu (Rector), Professor Dr. Marioara Abrudeanu (Vicerector), Eng. Vasile Costescu (Mayor,
Mioveni-Arges) and Ion Georgescu (Vicemayor) is kindly acknowledged. At UP, among the organiz-
ers we quote: Anca-Veronica Ion, Mircea Bolosteanu, Gheorghe Nistor, Bogdan Nicolescu, Constantin
Georgescu, Catalin Ducu, Sebastian Parlac, Nicolae Popa, Florica Raduna, Raluca Heroiu (Georgescu),
Cristina-Simona Ion, Aniela Dragomir, Antonio-Mihail Nuica, Elena Codeci, Daniela Cristina Trancau
(Sarbu), Marius Macarie. In Mioveni-Arges, the help offered by our former student Liliana Sandulescu
was essential. We also mention the unexpected significant support on the part of the group of teachers
of mathematics and physics leaded by Camelia-Elena Pufu (Director) and Mariana Radulescu.

The proceedings of these five CAIMs were published in Buletin Stiintific of UP, Series Mathem.-
Inf. and their high quality is mainly due to our colleague Professor Lecturer Mircea Bolosteanu. The
communications of the section of education from CAIM 2002 were published by Tiparg edition house in
a separate volume. In 2002, at Mioveni-Arges, it was for the first time that such a section was successful
at a CAIM.

The eleventh edition of CAIM was again coorganized by ROMAI and UO and it was influenced by
two great events. The first is the anniversary of the founder of UO, Rector Teodor Maghiar, who always
offered his elegant moral and material support to CAIMs. In the name of ROMAI members we address
to him all our gratitude and the best wishes for the future.

The second was that the Doctor Honoris Causa title of UO was conferred to two distinguished
Romanian mathematicians, Academician Radu Miron and Professor Dr. Gheorghe Micula. In addition,
CAIM 2003 benefited to the best e-mail organization in the CAIM history. I have the approval of all
participants to CAIM 2003 to express heartily thanks to Associate Professor Dr. Ioan Dzitac for the
excellent job he did. He was faced with significant difficulties: thousands of messages, at least three
variants of more than 80 written versions of the communications, incertitude of financial supports and
many other shortcomings. The majority of these drawbacks could be avoided if the material possibilities
of the participants were higher. Professor Dzitac understood this situation and sacrificed his time and
forces for the success of CAIM. This is why our thanks to him are so vivid. In his effort, Professor
Dritac was constantly helped and counseled by the Rector Maghiar. Also, he enjoyed the collaboration
of his young colleagues, Horea Oros and Daniel Erzse. Besides the former group of organizers from the
UO, Professor Dr. Mircea Balaj, the head of the Dept. of Mathematics of UO, together with other
members of this department contributed also to the very good organization of CAIM 2003.

Under these auspices, the CAIM 2003 was a real success: very high quality of communications includ-
ing some of the most recent topics in applied mathematics, industrial mathematics, pure mathematics
and computer science.

Like to all previous editions, the section of algebra, logic and topology was very well represented.
Differential geometry was the concern of some very good communications. A lot of papers dealt with
equations (integro-differential, integral, functional, stochastic) and their qualitative analysis (e.g. stabil-
ity) and numerical methods for them. Complex applications to hydrodynamics, hydromagnetic stability,
flows through porous media, electrodynamics, mechanics, engineering (aviation, electronics, shipbuild-
ing), economics, biology, medicine were presented. Interesting papers on asymptotic analysis, complex
analysis, functional analysis, bifurcation were exposed. Dynamical systems (and, in particular, neural
networks) were treated too. We quote some communications on fractional programming, operational
research and mathematical statistics. Definitely, the novelty at this CAIM was represented mainly
by computer science (parallel computing, security in e-mail system Internet-based), image processing,
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numerical modeling in ecology (e.g. dynamic process above Central Asia). In addition, we quote two
highly interesting papers on application of asymptotic analysis in complex field of the Schrodinger
equation. Finally, we remark the increasing interest for the modern mathematical training of the new
generations expressed in the communications presented at the education section of CAIM 2003.

Looking at the number and expertise of CAIM participants, mainly ROMAI members, it follows
that ROMAI became the most prestigious society of Romanian applied and industrial mathematics
and that CAIMs are already famous not only in Romania. Some of them are the authors of the
articles herein. Renowned universitary professors or research workers from abroad participated to
CAIMs: Allen Tayler (the founder and President of European Consortium of Mathematics in Industry),
Catherine Bandle (ROMAI member, for a long time Director of the Department of Mathematics of
Univ. of Basel, Switzerland), Zbigniew Peradzynsky and Kazimierz Piechor (Institute of Fundamental
Technological Research, Warsaw), Vladilen Trenogin (Academician, former Director of Moscow Steel
and Alloys Institute), Mitrofan Ciobanu (Academician, President of Society of Mathematics from Rep.
of Moldova), Mefodie Rata (Academician, President of the Committee for Promoting Mathematicians of
Rep. of Moldova), Boris Loginov (Univ. of Ulyanovsk, Russia), Mirsaid Aripov (National University of
Uzbekistan, Tashkent), Nenad Mladenovic (President of Society of Applied and Industrial Mathematics,
Serbia and Montenegro), Kiyoyucki Tchizawa (Musashi Tech. Univ., Japan), Lidia Palese (Univ. of
Bari), Maria Margarida Amorin Ferreira (Univ. of Porto), Maria do Rosario de Pinho (Univ. of Porto),
Anthippi Poulkou (Univ. of Athens), Chrysoula Kokologiannaki (Univ. of Patras), Harry Vereecken
(Director of Institute of Chemistry and Dynamics of the Geosphere, Julich).

This volume contains part of the communications delivered to CAIM 2003. The choice was dictated
by their Latex 2e presentation and the preference for the English language. A second volume will
contain the rest of the communications written in Word and mostly in Romanian language.

Bucharest 2003-20-07



Numerical modeling of dynamic processes above Central Asia

Abdurakhimov B.F.; Aripov M.M., Veksler A.S.
Department of Computer Technology, National

University of Uzbekistan, Vuzgorodok, 700095 Tashkent, Uzbekistan
e-mail: m.aripov@nuuz.uzsci.net

1. INTRODUCTION

On the basis of 15 leveled regional of non-adiabatic model [1] based on the prediction of a complete
system of equations of hydro thermodynamics, the modeling of winter dynamic processes over Central
Asia is carried out. Moreover, the model intended for modeling large-scale processes is used for the
diagnosis of mezoscale phenomena such as fronts. Since these types of models do not reproduce with
fidelity the structure of front, the frontogenetic function was chosen as the parameter, on which it is
possible to decide about the presence of developing front.

Distinctive features of the Central Asian region (CAr) are the high mountain files bending around
the CAr from the south and east and the drying up Aral Sea, resulting in ground drying up, and
formation of deserts and dusty storms. Being a barrier against cold winds from north and hot winds
from the south, the Aral sea plays the important role in mitigation of climatic system of region and
serves as the catalyst for the formation of clouds because of huge weights of water pair, rising from its
surface. At the end, this moisture renews stocks of ice and snow on the distant mountain slopes, thus
finishing the water circulation.

The modeling was carried out on the GARP data. The linear change of borders with 12-hour interval
is stipulated in the model.

Previously the processes dominant in wintertime on investigated region were analyzed and selected.

The qualitative comparative analysis of actual and prognostic cards, which have been carried out
with the account of macro-synoptic condition, shows a good agreement of actual and model data if
complex processes in atmosphere - formation and evolution of cyclone and aggravation of front and
anticyclogenesis occur.

The same conclusion is confirmed by quantitative estimations of modeling successiveness.

On the account of frontogenetic function it is necessary to calculate the derivatives from nonlinear
members, vertical speeds, sources and drains. This imposes high requirements to initial information.
In order to suppress the possible noise in data it is convenient to use median filtration, which is one of
methods of nonlinear signal processing. The computations showed that the median filter substantially
suppresses noises, allocates useful signal, leaving constant its place.

The comparison of actual and forecasting cards of frontogenetic function shows that the model is
able informatively to describe its basic changes within one day.

Only on the basis of prognosis results comparison of complex processes on the region together with
synoptic analysis is possible to decide on the practical applicable features of frontogenetic functions
and on the method of diagnosis of fronts.

2. PROBLEM FORMULATION AND METHOD OF SOLUTION

On the basis of classification of atmospheric processes above CAr, the following dynamic processes
dominant in winter time above the investigated region (0° w.l.- 90° e.l., 67,5° n.1.-20° n.l.) the de-
velopment of which and an aggravation of frontal zones is typical were found: 1) January, 2-4 7 a
development of the western cyclone; 2) January, 4-6 - the western cyclone with wave activity on fronts;
3) January, 5-7 - the western carry, occurrence of a wave; 4) January, 7-9 - strengthening of a wave,
development of the Murgab cyclone; 5) January, 10-12 - southwest periphery of an anticyclone; 6) Jan-
uary, 21-23 - southwest periphery of an anticyclone, development of the south Kaspii cyclone with the
subsequent western and northwest intrusion into Central Asia; 7) January, 23-25 - northwest streams,
southern periphery of an anticyclone, development of the Murgab cyclone.
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A distinctive feature of the CAr is the complex lay of land. So, from a southwest Central Asia the
Caucasian mountains, from the south - bend around Kopet Dagh and spurs of Hindu Kush with heights
more than 3 km, from the east - Tien Shan and Pamir with heights 5-7 km.

Modeling was carried out on the basis of 15 level regional, diabatic model of the atmosphere [1] based
on the dprediction of a full system of the hydro thermodynamics equations. Numerical integration of
the model and parameterization of physical mesoscale processes, are described in detail in [1].

The linear change of borders with a 12-hour interval in model is used. Term of integration 7: 48h.

2.1. Numerical results. For the general representation of quality of reproduction the model of the
specified processes averaging on all situations factors of correlation (K), relative error (E) (tab. 1) and
full Lorenz energetic cycle were calculated. According with table 1, the quality of modeling is high.

Table 1 Estimations of quality of modeling of winter dynamic processes above CAr

Before to proceed to the qualitative analysis of the results of modeling, it is necessary to choose the
parameter caracterizing the presence of developing front. By studying the change in due course of this
parameter, it is possible to decide on the character of the physical processes which take place in an
atmosphere. Such a characteristic is the frontogenetic function (F), determined as a time derivative of
a horizontal gradient of temperature in a moving particle.

To positive values will correspond process of strengthening of horizontal gradients of temperature,
e. c. frontogenesis, negative - frontolis.

Since for the computations of the frontogenetic function it is necessary to compute the derivatives
from nonlinear members, vertical speeds, sources and drains, high requirements to the initial data must
be imposed. Indeed, a series of the computations which have been carried out on GARP dataset,
showing high sensitivity frontogenetic function to possible noise in given measurements (fig. 1 a, b). In
addition the noise level quite often proves to be equal to a level of a useful signal. In order to suppress
the noise the filtration, which is one of methods of processing nonlinear signals the median filter is used
by us. The median filtration keeps sharp differences in fields whereas the usual linear filter smooth
these differences.

A series of experiments with data GARP by means of median filter has shown that the best results
are obtained when using the filter with the aperture 5X5 and when the field of temperature is exposed
to a filtration only. The median filter substantially suppresses noise, allocates a useful signal, leaving
constant its location.

Now let us proceed to the qualitative analysis of dynamic processes. Below, as an example, the
experiment 2 is described.

In order to study the cyclones and fronts evolution, fields H-1000, H-500, T-1000 , H-850 were
designed and analyzed. The choice of these fields is dictated by the fact that they are the traditional
basis in working with weather forecasters.

Thus, during numerical experiment with 00 h January, 4 up to 12 h January, 5 (fig. 1) the following
changes were essential:

1) the high-altitude cyclone above the Baltic coast of Poland has ceased to be inactive and the
speed of 15-20 km/h is began displaced to a southeast to Warsaw - Kiev - Moscow;

2) as a result of the rapprochement of three air weights there was an increase of gradients along
all site Planetary high-altitude frontal zone to the east from 40° e.l.;

3) along strips 45-55° n.l. from Warsaw up to Southern Ural activation of cyclonic activity with
a deepening available and formation of the new cyclones centers at the ground was observed.
East center of depression deepens due to advection of heat up to 12h January, 4, sometimes
remained without changes. As a result occlusion began filled. The most western cyclone formed
at the ground, all period of numerical experiment, slowly going deep, approached of a cyclone.
In 00h January, 5 both centers were linked by one closed isobar of 1000mb. However, then, due
to a non-uniform growth of pressure, they have again splitted in two centers;

4) in the rear of the system consisting of two cold longitude focused fronts above Asia Minor
peninsula, an anticyclone began formed. The growth in pressure above Caucasus has reached



5mb/3h, above Turkmenistan 7-9mb/3h. Such an active anticyclogenesis has caused the big
changes in weather conditions in CAr: a strong wind, deposits.

This brief synoptic analysis yields an illustration of the macroscale situation on the basis of it is
more convenient to study mesoscale features of the situation chosen for the experiment.

Let us now discuss the results of the numerical experiment, following the above synoptic analysis.
The high-altitude moving cyclone, former up to 12h January, 3 inactive in area of Warsaw, all over
again to a southeast, then to the east and to northeast, is well predicted by the model. Connected
with a deepening of a cyclone and its displacement to the south increase of gradients at the southern
periphery of this cyclone, the amplification of a crest to the east from a cyclone in 12 h January, 4 and in
00 h January, 5 is also reflected by model. It is only at 12 h January, 5 that the model, having correctly
reflected the tendency of destruction of east crest, ”was mistaken” in the speed of its destruction. The
model reflects increasing gradients along subtropical Planetary high-altitude frontal zone to the east
from 40 ° e.l. Development of ground depression (on the real and modeling data) is shown in on fig.
2 (d, e) and (b, g). On these figure it is seen that the changes in the form, structures and intensity of
multicenter formations were complex. The basic changes are: its deepening owing to advection with
the subsequent filling occlusion east center and a deepening of the western center model is reflected.
Anticyclogenesis above Minor Asia, branch of the closed anti-cyclonic nucleus from a subtropical crest
and fast moving of the generated anticyclone through Caucasus and CAr are also well described by the
model.

In a southeast of region the model reproduces a crest which is not observed on real maps. The reason
of such behavior of model is the complex orography of this region.

The qualitative comparative analysis of the actual and modeling cards, carried out on the account
macrosynoptic conditions, has shown a good agreement of the actual and modeling data if in the
atmosphere there were very complex processes: formation and evolution of a cyclone, an aggravation
of front and anticyclogenesis.

On fig. 1 fields of frontogenetic are shown to act on a surface 1000 GPa and position of frontal
systems. Even simple comparison of values of function F on two surfaces (H1000 and H500) reveals the
ambiguity and complexity of its space distribution.

The analysis of materials of the given experiment shows that the fields of the frontogenetic function
contain the information necessary to the explanation of evolution of fronts and related formations.
Thus, on the maps for 00 January, 4 it is seen, that big positive values F both at the ground and
in average troposphere are near to peaks of the developing waves of the cold front, which further has
resulted in the development of these waves and registration of a cyclone. Concurrence of areas raised
values F in area 60° n.l. with 70-80°.l. On surfaces 1000 and 500 GPa has also resulted a further
formation of a cyclone from a flat wave.

The area of negative values frontogenetic functions on both surfaces lies in the range of 10-20° e.l.,
30-50° n.l., accompanied by the appropriate wave indignation on the cold front owing to the fact that
what this wave has not received a further development.

Lowering Arctic Planetary high-altitude frontal zone in 12 h January, 4 has resulted in already
marked aggravation of fronts along 50° n.l. and to the east 40° e.l. Is especially obvious on a surface
1000 GPa. The greatest positive values F are marked along a zone of the Arctic front in 12 h January,
4 and in 00 h January, 5 and the peaks of an internal wave it begun the occlusion of a cyclone.

Position of areas of positive values of F and change of their intensity is rather easy and obviously
possible to connect with certain sites of the fronts. Areas of negative values of F coincide with areas of
divergence on a surface 500GPa, or with the position antycyclonic crosspieces - saddles at the ground.
The concurrence of maximal positive values of F to position of the frontal sections and peaks of the waves
on them 12 h after is important for the forecasting. In the given experiment this feature is distributed
over all four terms of integration. Comparison actual and modeling maps of the frontogenetic function
shows that the current model of the first day is able to describe its basic changes.



3. CONCLUSION

On the basis of the results of numerical modeling of dynamic processes above Central Asia region it
is possible to draw the following conclusions:
1 the model reproduces well the evolution fields of temperature, wind and vertical speed during
1.5 days;
2 the frontogenetic function describes effectively the development of the frontal areas during 24h;
3 the comparison of the separate components of the frontogenetic functions reveals a bend isen-
tropic surfaces in the bottom troposphere at certain times more than its other components.
The contribution of the heat inflowsto the total frontogenetic function proved to be less than
its other components.
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Remarks on varieties of compact rings

Alina Alb

Department of Mathematics, University of Oradea, Romania
dalb@uoradea.ro

Let R be a class of Hausdorff compact rings. R is called variety if it is multiplicative, hereditarily
closed and closed under taking of continuous homomorphic images.

Let 90t be a variety of compact rings and K a subclass of it. We say that 9t is generated by £ if
M D K, M is a subvariety of M implies M’ = M.

Theorem 1. If R is a class of compact rings, then PQSP () = QSP (R), SQSP(R) = QSP(R),
QQSP(R) = QSP(R).

Proof. We will show that PQSP () = QSP (R). Indeed, let A; € QSP(R), i € I. There exist
B; € SP(R) and continuous surjective homomorphisms ¢; : B; — A;. Each B; is isomorphic to a
closed subring of a ring F;, which is a topological product of rings from K. We identify B; with its
image in P;. Since [[B; C [] P is a closed subring of [] P;, we obtain that [[B; € SP(R). Since
ITA4; is a continuous homomorphic image of [ B;, we obtain that [] 4; € QSP (8). We proved that
PQSP(R) = QSP (R).

We will show that SQSP (R) = QSP (R). Let A € SQSP (R), i.e.,, A is topologically isomorphic to
a closed subring of a ring B € QSP (R) (again we identify A with its image). There exists H € SP (R)
and a continuous surjective homomorphism ¢ : H — B. Evidently, A is a continuous homomorphic
image of the closed subring ¢=! (A) of H and ¢~! (A) € SP(R). It follows that A € QSP (f) and so
SQSP(R) =QSP(R).

The relation Q? (R) = Q (R) implies QQSP (]) = QSP (R). O

Theorem 2. If & is a class of compact rings, then QSP (R) is the smallest variety of compact rings
containing K.

Proof. Let M be a variety of compact rings containing 8. Then 9t O QSP (&) which is a variety by
the last theorem. O

We give here some examples of varieties of compact rings.

1. The class of all compact rings.

2. The class of compact commutative rings.

3. If ?M is an abstract variety of rings, then the class of all compact rings which belongs to 91 is a
variety of compact rings.

4. The class of all compact p-rings, where p is prime.

5. The class of zero-dimensional compact rings.

6. Let X be a Tychonoff space. A compact ring R is called the free compact ring generated by X if
are satisfied the following conditions:

i) X is a subspace of R

ii) R is topologically generated by X

iii) for each continuous function f : X — R' there is a continuous homomorphism f : R — R’
extending f.

It can be proved that for any space X there exists the free compact ring F (X) generated by X.

Let now X be any discrete space and M any subset of F'(X). Denote by V (M) the class consisting
of compact rings R with property that for any continuous homomorphism h : F (X) — R, h (M) = 0.
Then V (M) is a variety of compact rings.

Let I be a closed two sided closed ideal of F (X). Denote by 9t (I) the class of all compact rings R
with property that I C ker (f) for every continuous homomorphism f : F (X) — R.

We shall prove that the class 9t (I) is a variety of compact rings. Indeed, let R, € M (I), a € Q.
Let f : F(X) — J[Ra be a continuous homomorphism. Then pr, o f(I) = 0 for each a € Q.
It follows that f(I) = 0, i.e. J[[Ry € M(I). Let S is a closed subring of a ring R € 9 (I) and
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f:F(X)— S a continuous ring homomorphism. Then f can be considered (in an obvious way) as a
homomorphism of F' (X) in R. It follows that f (I) = 0, hence S € M (I). Let @ : R — R’ a continuous
homomorphism of a compact ring R € 9t (I) on a ring R'. Since « is surjective, for each x € X the
set a~! (f (x)) is non-void; choose t, € a~! (f (z)) . The mapping X — R, x + t, can be extended to
a continuous ring homomorphism f: F(X) —» R. We claim that f = ao f Indeed, if z € X then
ao ]?(ac) = a(t;) = f (z). Since X is a topological generating set for F' (X), we obtain that a o f=1
Then f (I) = ao f (I) = 0, therefore R' € M (I).

7. Denoted by 9 = Var (Z,) the variety of compact rings generated by Z, (Z, is the ring of p-adic
integers). Then any ring from 90 is a commutative compact p-ring. There are finite commutative p-
rings which are not in 9. For example, GF(p?) ¢ Var (Z,). Indeed, for any x € Z,, nlingo(wp —z)" =0,

therefore this condition is true for any ring from Var(Z,). Since GF (p2) doesn’t satisfy the identity
P — xz = 0 it is not contained in Var (Zy).

Question. Is true that any finite commutative nilpotent p-ring is in Var (Z,)?

8. The class of compact rings which admit the Wedderburn-Mal’cev decomposition is a variety.

Definition 3. We will say that the compact ring R admits the Wedderburn-Mal’cev decomposition if
there exists a closed subring S such that R =S & J (R).

Lemma 4. If{R, : a € Q} is a family of compact rings which admit the Wedderburn-Mal’cev decom-
position then the product [[ R, admits the Wedderburn-Mal’cev decomposition too.

Proof. Indeed, [[Ro = [[Sa ® J (] Ra) and J ([[ Ra) = [1J (Ra)- O

Lemma 5. If R is a compact ring which admits the Wedderburn-Mal’cev decomposition and R' is a
closed subring, then R' admits too the Wedderburn-Mal’cev decomposition.

Lemma 6. If R is a compact ring admitting the Wedderburn-Mal’cev decomposition and R’ is its
continuous homomorphic image, then R' admits the Wedderburn-Mal’cev decomposition too.

Proof. Let f : R - R'and R=S®J (R);then R' = f(S)+ f(J(R)) and f (J (R)) C J (R'), therefore
R' = f(S)+ J(R'). Since f (5) is regular and compact R' = f (S) @ J (R'). O

We will extend the notion of a product of two varieties to the topological case [N], [7].

Definition 7. Let O and N be two varieties of compact rings. Then the product Mo N of varieties M
and N consists of those compact rings R for which there exists a closed ideal I € 9 such that R/T € M.

We will show that 99t o 91 is indeed a variety. Let R; € Mo N, ¢ € I; then for any i € I there
exists I; € 91 such that R;/I; € M. Since [[I; € M and [[ (Ri/1;) Ziop [[ Ri/ [1 L € M, we get that
[T R; € 99t o N. We obtained that 90t o N is multiplicative.

If R € 9t oM then there exists I € N such that R/I € M. Let S be a closed subring of R. Then
SNIeMNand S/SNIT =4, S+I/I€ M, hence S € Mo N.

Let f: R — R, R € Mo N, then there exists I € N such that R/I € M. Then f(I) € 9 and
R'/f(I) 240p R/I+ker f. Since R/I+ker f is a continuous image of R/I, we obtain that R/I+ker f € 9.
We get that R’ € Dt o N.

Consider now the variety 9 of topologically nilpotent rings. It has the property 9o 9t = 9. If M
is the variety of compact rings admitting the Wedderburn-Mal’cev decomposition, then 9% o 9t # 9N
[consider the ring Z /47Z)].

Theorem 8. Let 2 and B two varieties of compact rings and M,,, n € NT the variety of compact
rings satisfying the identity ™ = x. Then (Ao IM,) o B = A o (M, o B).

Proof. ”2” Obvious.

7C”. Let R € (A0 9M,) 0B, then there exists an ideal I of R, I € AoIM,, such that R/I € B. There
exists an ideal I’ of I, I' € 2 such that I/I' € M,,.

The factor ring I /I’ is semisimple therefore it has an identity. Let ¢’ = e+ I’ be the identity of I/I'.
We can assume that e? = e; then I C el + I'.
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We claim that I’ is ideal in R. Indeed, if x € R and ¢’ € I', then zi’ € I. Therefore zi' = ei + i",
where i € I'. Tt follows that exi’ = ei + ei” hence ei € I', so xi' € I'. In analogous way 'z € I'. Then
I' is an ideal in R, R/I € B and R/I =,, R/I'/I/I', therefore R € 2o (M, o B). O
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Abstract. The renewal of multi-state systems is modeled using Markov renewal
processes. The Markov renewal equation is solved in a Galerkin framework based on
trigonometric second order B-splines.

1. INTRODUCTION

The evolution of a large class of systems naturally ends when the first failure occurs, but for the
others, called multi-state systems, renewal possibilities must be analyzed [4]. This paper presents a
mathematical model and its numerical solution in order to compute the steady-state availability and
the reliability when the system is complex enough to identify many states from a full operational state
to a full under repair state. For the modeling purposes, the Markov Renewal Process (MRP) concept
described in [5] and [6] is used. The numerical solution is obtained by a Galerkin approach based on
the second order trigonometric B-splines.

The results extend the modeling aspects described in [11]. The approach is different from [10] and
incorporates recent developments in Weibull modeling and numerical computing, provided by [8] and
[2].

The MRP model is described in the next section. Trigonometric B-splines and the Galerkin approach
are considered in Section 3. Finally, numerical experiments are described and concluding remarks are
provided (Section 4).

2. THE MRP MODEL

Let 0 =Ty < Ty < T, < --- be the time instants of successive state transitions in a stochastic
process (having K states denoted by: 1, 2, ..., K), and let the random variables Xy, X1, X, - -+ which
denote the states of the system at time T;, 7 = 0,1,--- . Two special states are important: s (start) -
for the state full operational system, and e (end)- corresponding to a full no-operational system which
is under repair. In applications, the state s is indexed by 1, and the state e is indexed by K.

Let us assume that at Ty, T3, - - -, the probability of any particular future behavior of the process,
when its current state is known, is not altered by additional knowledge concerning the past (the
process history is not important). These instants are called Markov renewal moments, and the bivariate
stochastic process (X,T) = {X,,Th;n = 0,1,2,---} is a Markov renewal sequence (MRS) since it
satisfies

(1) P{Xn+1 =5Thp1 — T, < t|Xn =i, Xo; T,y vTO} =
= P{Xn+1 = j:Tn—l—l -T, < t|Xn = Z}

foralln=0,1,---;4,7=1,2,3,--- ,K and t > 0.

The state transitions only happen at Markov renewal moments. The underlying stochastic process
of the approximate model is a semi-Markov process (SMP), {Y = Y (t),t > 0} with embedded MRS
(X,T). The states of the SMP are defined by Y'(¢t) = X,,,if T), <t < Tppy1.

The stochastic process Y is determined by a vector of initial state probabilities p(0) = [P{Y(0) =
i},i = 1,2,--- K] = [1,0,---,0] and the kernel matrix M(t) = [M;;(t)]1<ij<r, where M;;(t)
P{X,; =j,Ts <t|Xo =i} are the conditional transition probabilities of the embedded MRS.

The only non-null elements of matrix M (t) correspond to the possible state transitions in a single
step. In practical applications, M (t) is a sparse matrix.
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The transient solution of the SMP proceeds by determining the matrix of conditional transition
probabilities V' (t) = [V;;](¢t) with Vi; = P{Y(t) = j|Y(0) = i} which satisfies the following integral
equations

K t
@) Vi) =[— H@y + / Vi (t — 5)dMiy (5),

where, if i = j then d;; = 1, otherwise d;; = 0. Also H; is given by: H;(t) = P{Ts < t|Xo = i} =
Zjl‘(zl Mi; (t).

The set of above equations, for 1 < 4,j < K form the so-called Markov Renewal Equation (MRE).
The unconditional state probabilities p(t) = [pi(t)]i = 1...K] can be determined as: p(t) = p(0)V (¢).
Hence, the instantaneous availability A(¢) can be easy obtained: A(t) =1 — p.(t).

In order to compute the system reliability, let us define the counting process: {N(t),¢ > 0}, where
N(t) = sup{i > O[T; < t} and {Ni(#), ¢ > 0}, where N;(t) = [{X, =0 < p < N()}.

Let be F(t) = [Fi'(t)]lgi,ng; where

K t
() Fy) =Myt + 3 / Mi(t — $)dFy; (3).

p=1,p#j ” 0

The system reliability [3] can be easily determined once Fj.(t), the first passage time distribution
from state s (as initial state) to state e (the system failure state), is computed: R(t) = 1— Fs.(t). Other
variables of interest in dependability analysis can be computed. If MTTF is an acronym for Mean Time
To Failure, and MTTR describes the Mean Time To Repair variable, then MTTF = E{N(t)} and
A=MTTF/(MTTF+MTTR) is the steady-state availability [4]. In the context of this paper, MTTR
is an input characteristic of the system under study.

3. ON SOLVING THE MARKOV RENEWAL EQUATION IN A GALERKIN-TRIGONOMETRIC B-SPLINE
FRAMEWORK

3.1. Trigonometric B-splines. Let {g;} be a non decreasing sequence of real numbers such as: g; <
gj+t < ¢j + 27 and let £ > 2 be an integer. The real functions T, which are right continuously, have
local support, and are generated by the recurrence relation [2]

sin(m;qj )Tj,k—l(z)Jrsin( qj*;“_z )Tj-}—l‘k—l(m)

/ —Y s 4y > iy
(4) T],k - Sin(w) q]+k q]
0, otherwise
with
1

5) Tya(z) =4 so(FEEE) g <o < qjp

i1 _

] 0, otherwise

are called the k-th order trigonometric B-spline functions based on the sequence knots (ql)fi]k The
functions

Njm =sin <w> Tjm(z)
are called the normalized trigonometric B-spline functions.

In this paper only second order trigonometric B-splines are used for numerical experiments. For
this reason, let v € N* — {1}, k = 2, the control points —7/v < 0 < /v and w := 7 /(2v). Then the
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trigonometric B-spline functions of the second order are given by

. z—qj_
r sm(w -1 )
9491

sl T € lgi-1,45)
(6) T(v) (.’E) = { sin wqq,jJrl__;,
/ W: T e [qjaqj+1)
L O, otherwise.

3.2. The Galerkin approach. Let [0, T] be the time interval under study. In order to apply the
Galerkin-trigonometric B-spline method to solve the renewal Markov equation, let us divide the time
interval [0, T] into a suitable number, n, of subintervals [g;, ¢;+1],0 < i < n — 1, not necessarily of
equal length, with ¢o = 0 and ¢, = T. As previously defined, every second order trigonometric B-
spline is considered on the interval [gj_1,q;+1]. Let v be a fixed value. Considering T;(.) as the second
order normalized trigonometric B-spline of type v with the knots ¢;_1, ¢; and g;41, the approximate
trigonometric B-spline solution of the above equations can be expressed as linear combinations of the
normalized trigonometric B-splines (0 < 4,5 <n —1)

(1) Vi) =) a/Tit)
=0

®)  Fyt)=>_ B 'Ti(t)
=0

with o)/ and ;7 unknowns to be obtained. The same number of equations can be obtained by using

the integral equations and taking the dot product, for [ = 0, 1,..,n, according to Galerkin method [9]

K
9) <T,Vij >=<T,[1 - H;(.)]ds; > + Z < Tl,/ij(t — 8)dM;p(s) >

p=1

and

(10) < T, Fij >=< T, Mi; > + Z <Tl,/Mw — 5)dF,;(s) >
p=1,p#j
where 0 <i,j<m—1land < f,g >= fOTf(t)g(t)dt.
To illustrate the approach, let us consider a system having K = 3 states (s = 1,e = 3), with the
kernel matrix
0 Mia(t) 0
(11) M@E) = Mau(t) 0 Mos(t) |,
M3 () 0 0
where M;; are functions describing the state transitions of a particular system under study. According
to (2) and (3), the following sets of functions are used

VH( ) =1—Hy(t) + [ Vit dM12(t —s), Vislt fo Vor (s)dMys(t — 9),
Vis(t fo V23 (8)dMz(t — ), Var (t fo Vi (t dMZl(t —8)+ fo V31 (t)dMa3(t — s),
V22( )= 1 — H(t) + fo Via(t dM21(t - S) Vo (t fo Viz(t)dMa: (t — s) + fo Va3 (t)dMasz(t — s),
Vau (t fo Vi1 (£)dMsz: (t — 5), Vaa(t fo Via(t dM31(t— s), Vas(t) =1— Hs(t +f0 Vig(t)dMsy (t — s),

and
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T A0 R(T) Frs(1) N(T)
1,25 0,993456463 1 0 3700
1,66 0,993456463 1 0 3700
2,08 0,999361069 0,998874537 0,001125463 44426
2,50 0,997268763 0,993402041 0,006597959 9094
2,91 0,995917869 0,988336076 0,011663924 6001
3,33 0,995045666 0,983736589 0,016263411 4919
3,75 0,994482529 0,979570036 0,020429964 4405
4,16 0,994118941 0,975767977 0,024232023 4127
4,58 0,993884191 0,972256028 0,027743972 3965
5,00 0,993732625 0,968966699 0,031033301 3867
5,42 0,993634766 0,965843871 0,034156129 3806
5,83 0,993571584 0,962843227 0,037156773 3768
6,25 0,993530791 0,959930944 0,040069056 3744
6,66 0,993504452 0,957081822 0,042918178 3728
7,08 0,993487447 0,954277424 0,045722576 3718
7,50 0,993476468 0,951504447 0,048495553 3712
7,91 0,993469379 0,948753402 0,051246598 3708
8,30 0,993464802 0,946017576 0,053982424 3705

TABLE 1. Numerical results.

Fii(t fo Ms(t — s)dF12(s), Fia(t ) Mao(t), Fis(t fo M12 t — s)dF>3(s),
F21( ) M21 + f() M23 t— S)dF31( ) F22 f(] M21 t— S)dF12 + f(] M23 t— S)dF32( ),
Fy3(t) = Mas(t) + fo Moy (t — S)dF13( ), F31(t) M3, (t), Fsa(t fo M3, (t — s)dF12(s),

F33 f() M31 (t - S)dF13( )

Therefore, the equation ( ) can be written as

fo Ti(¢ (t)dt—l—a fo Ti(¢ ()dt+a fo TltTZ(t)
—613 f() Tl (t)[1 — Hi(t)]dt + O‘OJ fo Ti(¢ fo To(s 1(t - )dt
o [V T(0) Jy To(s)AMi(t = )it + off [ Tl<t> Jy To(s)aMis(t — 5)
—+-oz1 fOT )fo Ty (s)dM; (t — s)dt + a3 fo Ti(t) f Ti(s)dM;s(t — s)dt
ng )fo Ty (s)dMis(t — s)dt + o)/ fo T)(t) fo Ty(s)dMiy (t — s)
+Oé fO T2( dMQ(t — S)dt + a2] fO T‘l fO T2 dMlg(t — S)dt

for0<i,j<n-1 and 0 g [ <mn,i.e. alinear system of equations having a sparse matrix, mainly due
to the local support property of the trigonometric B-spline functions.

In order to obtain the reliability of the system modeled by the above kernel matrix, the following
system of equations have to be solved

fO M12 t— S)dF23( )

Fu(t
F23() Mo (t +f0 M2 (t — 5)dFi3(s),

which can also be solved in a Galerkin framework.

4. NUMERICAL RESULTS AND CONCLUDING REMARKS

Let us consider a system having 3 states: it is full operational (state 1), it is partially operational,
but available (state 2), and is is under repair and unavailable (state 3). The kernel matrix M (¢)
considered above has the following elements: M5 (t) = P{the system partially fails before or at time
t} = 1 — exp(—At), M2 (t) = P{the system is completely recovered before or at time t and t < L } =
1 —exp(—put) — (exp(—uL) — exp(—pt)) if t > L, and My (t) = 1 — exp(—put) if t < L; Ma3(t)= P{the
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system is not completely recovered before or at time t and ¢t > L } = 0if ¢t < L, but 1 — exp(—uL) if
t > L; M3 (t) = P{ the system is partially or completely recovered before or at time t} = 1 —exp(—ut).

For A\ = 0.002083(hours™!), u = 0,04167(hours~'), L = 2 (corresponding at 48 hours), n = 40 and
v = 2, using the trigonometric Simpson quadrature method [7], the results presented in Table 1 are
obtained.

Comparing the above results against the approach given in [11], less accurate results are obtained
by using the Galerkin approach. Another disadvantage consists of its computational effort required to
estimate the coefficients. Numerical quadrature methods have to be used to compute the coefficients,
and a large sparse linear system of equations have to be solved. Gauss or Quasi-Gauss-Newton methods
[3] can be used to solve the linear systems which appear in the modeling process.

However, this method works for general kernel matrix. This means that a large variety of transitions
M;; can be used, in closed form (see [8] for a generalization of some classical models) or estimated from
data failures and/or data maintenance reports.
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1. INTRODUCTION AND PRELIMINARIES

In this paper, using the Eilenberg and Montgomery fixed point theorem [4], a matching theorem
involving acyclic maps is obtained . Further on we establish new KKM theorems, mutually equivalent
with another matching theorems. In the last section some applications concerning coincidence and
section theorems are given.

Let us recall some concepts and notations. A convez space [10] is a nonempty convex set in a vector
space with an arbitrary topology that induces the Euclidean topology on the convex hulls of its finite
subsets. A subset A of a topological space Y is said to be compactly open (resp. closed) in Y if for
every compact set K C Y the set AN K is open (resp. closed) in K. A nonempty topological space is
acyclic if all its reduced Cech homology groups over rational vanish.

A map F : X — Y is a function from a set X into the power set 2¥ of Y, that is, a function with
the values F(z) CY for z € X, and the fibers F!(y) ={z € X :y € F(z)} fory e Y. If A C X, let
be F(A) = U{F(z) : z € A}.

For topological spaces X and Y a map F : X — Y is upper semicontinuous if the set {z € X :
F(z)NY; # 0} is closed in X for each closed set Y7 in Y. An upper semicontinuous map with compact
acyclic values is called an acyclic map. A map F : X — Y is said to be compact if the range F'(X) is
contained in a compact set of the topological space Y.

Throughout this paper the topological spaces will be supposed Hausdorff. For a set D let (D) denote
the set of all nonempty finite subsets of X.

2. MATCHING THEOREMS AND KKM THEOREMS
We start with the following fixed point result (see [4]).

Lemma 1. Let A be an n-simplex with the Fuclidean topology and let Y be a compact space. Let
F : A —Y be an acyclic map and let g : Y — A be a continuous function. Then there is xg € A
such that xo € g(F(x0)) (or, equivalently, there are zg € A and yo € Y such that yo € F(zo) and

zo € 9(y0))-
The following result generalizes Theorem 1 in [11] which in turn extends the open version of Fan’s

matching theorem [6].
Theorem 2. Let D be a monempty subset of a convex space, let Y be a topological space and let
G :D — Y be a map such that:

(i) for each x € D, G(x) is compactly open inY ;

(ii) G(D) =Y.
Then for each compact acyclic map F : coD — Y there exists A € (D) such that F(coA) N N{G(z) :
ze A} #0.
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Proof. Since F is a compact map, we may assume that Y is a compact space and, for each z € D, G(z)
is an open subset of Y. Consequently, there is a set Dy = {z1,...,2,} € (D) such that Y = U, G(x;).
Let {a;}? ; be a continuous partition of unity subordinated to this covering of Y. Define the continuous
function g : Y — coDy, G(y) = Y. i, a;(y)z;. By Lemma 1 there are 29 € coD; and yo € Y such that
zo = g(yo) and yo € F(zg). Denote I = {i € {1,...,n}: a;(yo) > 0}. Obviously I # (. If i € I, then
Yo lies in the support of a; and, therefore, in G(z;). Thus yo € N{G(x;) : i € I}. On the other hand,
zo = g(yo) € co{z; : i € I}, whence yo € F(zro) C F(co{z; :i € I}).

Taking A = {z; : i € I} we get yo € F(coA) NN{G(z) : z € A}. O

Theorem 2 can be restated in its contraposition from and in terms of the complements S(x) of G(x)
in Y as follows.

Theorem 3. Let D be a nonempty subset of a convex space, let Y be a topological space and let
S :D — Y be a map with compactly closed values. If there exists a compact acyclic map F : coD — Y
such that

F(coA) C S(A) for each A € (D),
then N{S(z) :z € D} # §.

The above KKM theorem includes earlier results of Lassonde [9], Chang [3], Shioji [15]. The com-
pactness condition imposed to the map F' can be relaxed as in the next theorem.

Theorem 4. Let D be a nonempty subset of a convez space, let' Y be a topological space, let S : D — Y
be a map and let F' : coD — Y be an acyclic map such that:

(i) for each x € D, S(x) is compactly closed in Y ;
(ii) for each A € (D), F(coA) C S(A4);
(iii) there exists a nonempty compact subset K of Y such that either
(a) N{S(z):x € Ao} C K, for some Ay € (D); or
(b) for each A € (D) there exists a compact convez subset Ly of coD, containing A such that

F(LA)ﬂﬂ{S(:E) S LAﬂD} C K.
Then F(coD)N K NN{S(z) : z € D} # 0.

Proof. Suppose the conclusion does not hold and put G(z) =Y \ S(z), for z € D. Since F(coD) N K
is compact and G(z) is compactly open for each z € X, there exists A; € (D) such that

(1) F(coD)NK C G(Ay).
We examine successively the two cases having in view to obtain a contradiction.
Case (a). In this case

2)  FloD)NK C Y\ K C G(A),

hence, by (1) and (2), F(coD) C G(A), where A = Ag U A;. Since coA is compact and F' is upper
semicontinuous compact valued, F(coA) is a compact set and F'(cod) C G(A).
By Theorem 2 there exists a nonempty set B C A such that
F(coB)NN{G(z) : z € B} # ), that is F(coB) ¢ S(B).
This contradicts (ii).
Case (b). By hypothesis, there exists a compact convex set L such that Ay C L C coD and
(3) F(L)nn{S(z):z€e LND} C K

We claim that F(L) C G(L N D). Taking into account (1) we have F(L)\ K C G(L N D). Hence,
F(L) c G(LN D). Since F(L) is compact, there exists B € (D) such that F(coB) C F(L) C G(B).
For the remainder of the proof we can follow that from Case (a). O
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Theorem 4 is a slight generalization of Theorem 3 in [13], which, in turn, generalizes earlier results
of Fan [5],[6], Lassonde [9].

Theorem 4 can be also stated in its contraposition from and in terms of the complements G(x) of
S(z). In this way the following generalization of Theorem 2 is obtained.

Theorem 5. Let D be a nonempty subset of a convez space, let' Y be a topological space, let G : D — Y
be a map and let F' : coD — 'Y be an acyclic map. Suppose that:
(i) for each x € D, G(z) is compactly open in'Y ;
(ii) there exists a nonempty compact subset K of Y such that F(coD)N K C G(D);
(iii) either
(a) Y\ K C G(Ay) for some Ay € (D); or
(b) for each A € (D) there exists a compact convex subset L of coD, containing A such that
F(LA)\K CG(LaNn D).
Then there exists an A € (D) such that F(coA) NN{S(x):z € A} # 0.

The following lemma is necessary in order to obtain an open-valued version of Theorem 3. Its proof
can be found in [1].

Lemma 6. Let D be a nonempty finite subset of a convez space, letY be a compact space, let G : D — Y
be an open-valued map and let F' : coD — Y be an acyclic map such that:

F(coA) C G(A) for each nonempty set A C D.

Then there is a closed-valued map S : D — Y such that S(z) C G(z) for all x € D and F(coA) C S(A)
for each nonempty set A C D.

Theorem 7. Let D be a nonempty subset of a convex space, let Y be a topological space, let G: D — Y
be a map with compactly open values. If there exists an acyclic map F : coD — 'Y such that F(coA) C
G(A) for each A € (D), then {G(z) : € D} has the finite intersection property.

Proof. Let D, € (D). Since F is an upper semicontinuous compact-valued map, Y7 = F(coD) is a
compact set. By Lemma 6, there is a closed-valued map S : D — Y} such that S(z) C G(z) NY; for
all z € Dy and F(coA) C S(A) for each A € (D). According to Theorem 3, we have N{G(z) NY; :
x € D1} DN{S(z) :z € D1} #0. O

The origin of Theorem 7 is due to Kim [8]. Our theorem includes earlier results of Lassonde [10] and
Park [12, 14].

In turn, Theorem 7 can be easily reformulated obtaining the following matching theorem, which is
a closed-valued version of Theorem 2.

Theorem 8. Let D be a nonempty finite subset of a convex space, let Y be a topological space and let
S:D —Y be a map such that:

(i) for each x € D, S(x) is compactly closed in Y ;
(ii) S(D) =Y.
Then for each acyclic map F : coD — Y there exists A € (D) such that F(coA)NN{S(z) : x € A} # ().

3. COINCIDENCE THEOREMS AND APPLICATIONS
As application of Theorem 5 we give the following coincidence theorem.

Theorem 9. Let D be a nonempty subset of a convex space, let' Y be a topological space, let G : D — Y,
T : coD — Y be two maps and let F': coD — Y be an acyclic map. Suppose that conditions (i)-(iii)
in Theorem 5 hold. Moreover assume that

(iv) for each y € F(coD), co(G™1(y)) C T~ (y).
Then there exists xg € coD such that F(zg) NT(xq) # 0.
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Proof. By Theorem 5, there exist A € (D) and yo € F(coA) NN{G(z) : x € A}. Therefore, yo € F(zo)
for some x¢ € coA.

On the other hand, from yo € N{G(z) : = € A}, taking into account (iv), we get g € coAd C
co(G™(yo)) € T~ (yo). Consequently, yo € F(zo) N T (x)- O

Theorem 9 extends results of Tarafdar [17, 18], Ben-El-Mechaieck et al. [2], Park [11].

Similarly, using as argument Theorem 8 instead of Theorem 5, we can readily prove the following
theorem:

Theorem 10. Let D be a nonempty finite subset of a convex space, let Y be a topological space, let
S:D —Y, T :coD — Y be two maps and let F : coD — Y be an acyclic map. Suppose that
conditions (i), (i) in Theorem 8 hold. Moreover assume that:

(iii) for each y € F(coD), co(S™1(y)) C T (y).
Then there exists xo € coD such that F(xo) N T (x) # 0.

Using Theorems 9 and 10 we obtain two section theorems including earlier results due to Takahashi
[16], Ha [7], Shioji [15].

Theorem 11. Let D be a nonempty subset of a convex space, let Y be a topological space, let F :
coD — Y be an acyclic map and let Q@ C coD x Y, ' C D xY be two sets. Suppose that:
i) T cQ;
(ii) for each x € coD, {z} x F(z) C §;
(i) for each x € D, {y €Y : (z,y) € '} is compactly closed in'Y;
(iv) for each y € F(coD), {z € coD : (x,y) ¢ Q} is convex;
(v) there exists a nonempty compact subset K of Y such that either
(a) for eachy € Y\ K, Ag x {y} ¢ T, for some Ag € (D); or
(b) for each A € (D) there is a compact convex subset L of coD, containing A such that
ye F(La)\ K, (LanD) x {y} ¢ I

Then there exists yo € F(coD) N K such that D x {yo} C T.

Proof. Consider the maps G: D — Y and T : coD — Y given by
Gz)={yeT:(zx,y) ¢ T} for z € D, and
T(x)={yeT: (z,y) ¢ Q} for x € coD.

Suppose that the conclusion is false. Then F(coD) N K C G(D). By (iii), for each € D, G(z) is
compactly open. Obviously, conditions (va), (vb) are equivalent to the conditions (iiia) and (iiib) by

respectively in Theorem 5. By (iv), for each y € F(coD), T~!(y) is convex, and taking into account (i)
we infer that co(G~!(y)) C T~ (y).

Therefore all hypotheses of Theorem 9 are satisfied, hence 7" and F' have a coincidence point x, €
coD. For y € T(zo) N F(x0) it follows (x,y0) ¢ © which contradicts (iii). O

In similar manner, from Theorem 10 we obtain

Theorem 12. Let D be a finite nonempty subset of a convex space, let Y be a topological space, let
F : coD — Y be an acyclic map, and let Q@ C coD xY, ' C D xY be two sets. Suppose that the
conditions (i), (i), (iv) in Theorem 11 hold. Moreover assume that

(iii’) for each x € D, {y € Y : (x,y) € T'} is compactly open in'Y .
Then there exists yo € Y such that D x {yo} CT.
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1. BASIC GEOMETRICAL OBJECTS ON J(T, M)

The geometrized framework on osculating first and higher-order osculating spaces was introduced and
widely studied by R.Miron and collaborators ([3], [4]). As a complementary extension of the tangent
(first-order osculating) framework, during the last decade the geometric approach on first-order jet
spaces ([7], [6], [1], [2]) was developed with significant results.

In the sequel let ¢ = (E = JYT,M),n,T x M) be the first order jet bundle of the mappings
¢:T — M, where T and M are C* real differentiable manifolds (dim 7' = m, dim M = n). The local
jet coordinates on E will be denoted by

(t*, 2,y i ayer. = W) uer,
where the set of indices I splits as follows
I=0,Ul,, In=I1I),Ul,, I,=m+n+1m+n+mn
In,=1m, In=m+1m+n, L,=1Iy X I, xI,

and the indices implicitly take values as described below:
Oé,ﬂ,“‘ € Ihl; Za.]: € Ihz; A:-B:"' € LJ; )‘7/“‘1"' €l
Moreover, when appropriate, any index A = m 4+ n + n(i —m — 1) + «a, will be identified to A = (fl)

and we assume that yA = :c(a) = gf&.

We endow E with the extended Lagrangian of electrodynamics ([6]) of the form
(1) L(ta z, y) =04B (t’ T, y)yAyB + UA(ta x)yA + (P(ta :1?),

where §ap is a nondegenerate tensor field, Ua(t, z) is a 1-form on E and ®(¢, x) is a scalar function on
T x M.

Further consider the Kronecker case

(2) JAB = 57(3)(%) = hB8 (t, z)gij (t,z,y),

where hop and g;; are non-degenerate tensor fields. The derived Euler-Lagrange equations evidentiate a
spray, which, under certain restrictive conditions provides a non-linear connection N = {N If‘} ueln, Acl,
on E, leading to a splitting [7, 4] TE = HE ® VE, where VE = Ker .. Similarly, N determines
the local adapted basis of X'(E) denoted by ([1], [2]) B = {6a,0i,04}(a,i,a)er, = {0u}uer, with 9y =
8%,&- = %; then the dual basis of B writes B* = {60‘,6",6’4}(&’2-’,4)61* = {0*},er. The existence
of Lagrangian-derived non-linear connections in the general Kronecker case [6] represents still an open
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problem. However, in the following cases, where § admits a particular Kronecker splitting, the problem
is tractable.

Remarkable particular cases
I. The ARL (almost Riemann-Lagrange) jet case has hq(t) metric tensor field on T'; the Lagrangian

i
a

produces the canonical nonlinear connection N = (N B("),N (

p )) of coefficients

v
ap

@ N = | ]s). N = A1) + 10 @Bagn + hasU)

k
B

Here we have denoted the hs-curl of U by U(g)j = (5[jU(k]), where 1; ;) = Ti..j — Ty and T(; ) =
B

Ti..j + Tj..s. In this case we have
(4) gap = 105pL.

More particularly, in the ARLS (almost Riemann-Lagrange separated) jet case, g;; is a metric tensor
field on M.

Considering a non-linear connection N = { N2, N/} fixed on E, a linear connection V = {L) I uwer
in E has the coefficients relative to the adapted basis provided by 6*(Vs, d,) = Lﬁ,,, VA, pu,v € I. These
group in 3% = 27 distinct subsets, according to the three sets of indices.

Let us endow E with a semi-Riemannian metric
(5) G= ha,@ (t)dta & dtﬁ + 9ij (ta T, y)dxl & dm] + gAB (ta T,y

~" ~"

h 9

~—

sy ® 6y”,

@ {

with gas = () = heB(t)gi;(t, z,y). In this case the Cartan linear connection V € T (N) ([7], [6])
has the four essential sets of coefficients

1 . . 1.
(6) L3, = |€v|’ Lj, = §g’k&,gk]~, Liy = |Jlk| ’L;'(’;) - Egll(é(ik)gjl} B 6(4)9]‘]“)’

() _goli| L&) _ i e _
By =% il E(yo = Satien 15 =

which provide the other 5 derived sets LEZ;V =05L5, =615,
0, L3 =0.

)
jk

The Liouville field C = y484 of (E,N) produces the deflection tensor fields df = (5AV5HC (n €
I, A € I,), and further, the associated to N and V electromagnetic 2-form F = FAH(SyA A dy*, whose
nontrivial components are
Fag = Fiyo =3 (h0guy®)) . Fan=Fy )= 3008 0y
(7) S A O O L)

=Fa=Lta, =1y =1 (,()pa )

Fai = Foy = b dey = bugey = 3 (00000u)

where |a, |i and |A denote the covariant derivations given by Vs, for u € Iy, , I, and I, respectively.

While the raising/lowering of the indices is performed by G, we canonically attach the electromagnetic
force

(8) F=F}6, 26, F{=hFFap, Fi=g"Fa;, F{ = ¢“PFap.
We note that in the ARLS case, the nontrivial coefficients of the Cartan connection are [6] {L§, =
gﬂ/ ’ Lék - }-

More particularly, in the ARLS case with m = 1, n = 4 and hy; = 1, one finds as particular case, the
pseudo-Riemannian weak gravitational model endowed with the metric g;;(z) = 7;5+¢€;5(x), where the

weakness of the gravitational field g;; is expressed by its decomposition into the flat Minkowski metric
n;; = diag(—1,1,1,1) and a small perturbation ¢;;(z), a symmetric tensor field with |e;;(z)] << 1.

i
jk
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2. PATHS AND LORENTZ CURVES ON JY(T, M)

In the following we consider smooth curves ¢ : J = [a,b] C R — E, having their images inside a
chart U C FE, locally given by

c(s) = (t*(s),2(s), 5 (s)) = (y"(s)),Vt € J
and we fix a linear N —connection V on E.

Definitions. a) The field V = % defined on c is be called the covariant velocity field of the curve
c. Its components are explicitely given by

fa 0 6ya . . -]
{VH}IJEIE<t 7377@: A+Né4tﬁ+NjAm]> )
(a,i,A)ET,
where the dot stands for the s-differentiation. We have also denoted F = F*d,,, where
VVH ot OVH
n_— wWEEY e e
F I o + L, V'V

is the covariant force on ¢, which provides the motion of the test-body along c.
b) We call ¢ a stationary curve with respect to V iff F = 0 along the curve.

c¢) The curve ¢ is called a h—curve, if 7,(V) = 0, and a v—curve, if 7,(V) = 0, where by 7, and 7,
we denoted the h— and v—projectors of the canonic splitting induced by N respectively.

d) An h — /v—curve which satisfies the extra condition F = 0, is called an h — /v—path, respectively.
Analytically, these curves are described by the following
Theorem. Let ¢: J C R = E be a curve. Then the following hold:

a) ¢ is a h—curve iff

9 V=06 =0 gt +NMO+NAP =0, VA€ I,;

ds

b) ¢ is a v—curve iff

(10) VF=0,Vuel, & 2 =0,Ypel, & c(s) = (to, 70, y(s)),s € J;

¢) ¢ is an h—path ("stationary h—curve or “horizontal geodesic”) iff besides (9) it satisfies % +
Ly y'vP =0, Yu € Iy. Note that the implicit sum in the right term involves just horizontal index
types.
d) ¢ is a v—path (7stationary v—curve or "vertical geodesic”) iff besides (10) it satisfies

1%
ds
Note that the implicit sum in the right term involves just vertical index types. The proof is computa-
tional.

(11) + L VBVY =0, VA € I,.

Consider the electromagnetic tensor fields in (7) and (8), the metric G in (5), a fixed nonlinear
connection N, and the Cartan connection attached to G having the coefficients (6). Then the Lorentz
equations attached to G, N and V have the generic shape

vve o o~ 4 \Za
wgs T e g
where V = V#§,, is the covariant velocity along the considered extended path of the moving test-particle.
In detail, the Lorentz equations have the form [2]

(13) £+ L3PV + L3d? VY + LG 1717 + L3 @717 + L§ 7" + L§a/i* = FRVP

(12) @ = F /4,

(14) &' + L5 tPV + Lica/ Ve + L 1717 + LY @7 + Ly %3k + Li a7k = FRvP
(15) VA4 N2+ NAi' + L,V + L& Veid + L VPVE = FgVvP,
where V4 = g4 + NP + N2, A€ I,
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a) The Lorentz h-paths satisfy the extra conditions V4 = 0, A € I, and since the right-hand side of
(13)-(15) is identically vanishing, they coincide with the usual h-paths of (E,N,V).

b) The Lorentz v-paths, have fixed base-point  (t,x) = (to,z0) € T X M, i.e., V¥ =0, u € I, and,
hence, the associated equations read

FgvB =0, FivB=0, FaVZ=v44+ L4 VBVC.
In the ARLS case the electromagnetic tensors simplify to F§ = Fé ) = FB =0, Fi = giFy; =

—19"U4; and the nonvanishing Cartan essential coefficients become

=-813], Lh=L), =02kl

G

a _ |a i | A (;)
LB’Y - |Bv| ’ ij - |jk| ’ LBv = L(g)V
Then the Lorentz equations (13)-(15) get the typical shape

« «a B _ = i | nink i, A A _
g |10 =0, 4| dd _—ZgJUA,V , Vi=o.

Note that in this case (g dependent on z only), the Berwald connection [7] has the same coefficients as
the Cartan connection, and, hence, the associated Lorentz curves, h- and v-paths are described by the
same equations. The Lorentz h-paths obey the extra equations §4 + N[;“tﬁ + N]-Ag'vJ = 0, which write
explicitely as

NOERE iV:8 . k 1 " i

i) — |25y + (|;k|y< Y haﬁU(g)j> i 0.
In the same way, the Lorentz v-paths for the Cartan connection satisfy the extra condition —V4 = 24,
having as solutions flat rays within the fibers of E - in accordance with the particular case J!(R, M) =
T M studied in [5].

In the ARLS uniparametric case, (for m = 1 and s = t! = t), we can use the Finsler-Lagrange
tangent space notations from [4]. Shifting the indices left by one unit (I, = 1,n, I, = n+ 1,2n), we

have y4 = y(l) not y®, and set locally hy; = 1. For the Lagrangian (1) of particular form
. 2e )
(16)  L(z,y) = mevij(@)y'y’ + —Ui(z)y" + &(2),

with 7;; pseudo-Riemannian metric and U = U;dz® 1-form on M, the fundamental tensor derived
from L via (4) is g( )6) (t,z,y) = gi5(x) = mey;j(x). The non-linear connection induced by L has the

NG

components N{* = 0,N;"/ =

Jelyt + gikU(;f)j, i=1,n, A=n+1,2n, with Ugy = A For V
Cartan connection, the Lorentz equations (14) confine to the known ones of Lagrange spaces [4], the
equations of the Lagrangian spray G' = $vi,y7y* + 5577 Ajjqy® [3, p. 171]. Remark that in the
absence of the electromagnetic force F, , , the equations (12) become the equations of stationary curves
of the connection V. In the absence of U, the equations (12) become the equations of geodesics of the

manifold M and the equations of h — paths become the Lorentz equations.

3. NUMERICAL SIMULATION WITH MAPLE V

In the ARLS uniparametric case consider m = 1,7 = R, hy; = 1 and n = 2. For M endowed with
the Lagrangian (1) where g = mcy;; with the potential U in L given by U = e(z'dz? — 2%dz?), € € R,
for a = ee(m?c)~!, we have the appropriately rescaled Lorentz-type equations

17) &+ || dak = (1) a(gma? + ¢™i"), i =T, 2.

Further we exemplify the influence of F' on h-paths for these three cases. Using Maple V programming,
computer-drawn images were obtained representing the Lorentz-type curves for different values of the
control parameter a. We note that, when the influence of the generalized electric potentials U;(z)
disappears (for a = 0), the sheaves of geodesics of the manifold M (marked with thick lines) are
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L 05 T [
FI1GURE 1
obtained; for nonvanishing values of a (a = —512 for Euclidean case, a = —1024 for the Poincaré half-

plane, a = 2 for the sphere respectively), the solutions of the system (17) deform to Lorentz curves,
under the influence of the electromagnetic tensor field, as seen below.

(1]

2]

(3]
[4]
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1. INTRODUCTION

In this paper we present a numerical method for Volterra nonlinear integral equations of second
type. Under the hypotheses of the local existence and uniqueness theorem we use the successive
approximations method to approximate the solution of the Volterra integral equation

M)y = [ Hu)ds + f@), o €lad

In order to compute the integrals involved in the steps of the successive approximation method we
use a perturbed trapezoidal quadrature rule with uniform distributed knots and the remainder in terms
of the third derivative. In this way, we obtain a numerical method and give the algoritm of this method
illustrated by an exemple.

The numerical methods for integral equations use quadrature formulas. Likewise, for linear integral
equations quadrature formulas based on Riemann’s sums as in [9] or rectangular and trapezoidal quad-
rature rules as in 7] are used to obtain a triangular algebraic linear system. The use of the successive
approximations method is suitable to nonliniar integral equations. In [6] D.V.Ionescu obtains numer-
ical methods for ordinary differential equations using the successive approximations. Obviously, this
method can be adapted for integral equations. In [3] the method in [6] is extended to nonlinear integral
equations using the trapezoidal quadrature formula. In [4] C. Iancu obtains a numerical method for the
delay integral equation which arise in biomathematics, z(t) = ftt_z f(s,z(s))ds, t € [0,T], using the
trapezoidal quadrature formula while in [2] a numerical method using a perturbed trapezoidal quadra-
ture rule with the remainder in terms of the third derivative is obtained. Here,we use and adapt the
quadrature rule from [2] to approximate the solution of (1).

2. EXISTENCE AND UNIQUENESS OF THE SOLUTION
In C[a, b] we consider the Bielecki norm, || u ||s= m[ax]|u(a:)|e*2(z*“) ,Vu € Cla,b], with a convenient
z€[a,b

)

constant z > 0. According to [3] we denote by Bla, b] the Banach space (Cla, ], | - [[s)-
On a closed ball B(f, R) C Bla,b] we define the mapping, A : B(f, R) — Bla, ],

AW = [ Hlsp(6)ds + £,V 7 €0,V y € BUR)
As in [3] we obtain the result:

Theorem 1. Let H and F be two real functions satisfying the following conditions:



29

(i) 3r>0,3 M,m >0 such that (b —a)M +m < r and |f(x)] < m, |H(z,y)| < M,Vz €
[aa b]:Vy € [_’ra 'r];
(i) H € C([a,b] x [-r.r]), f € Cla,b];
(iii) (3)L > 0 such that , |H(z,u) — H(z,v)| < Llu — v|,Vz € [a,b],Yu,v € [-r,r];
(iv) (3)R > 0 such that M (b—a) < R.
Then for any z > 0 such that % < 1 equation (1) has in B(f, R) a unique solution which can be obtained
by the method of successive approzimations.

Let us construct the sequence of successive approximations, given by ¢, = A(pm,_1),Vm € N* :

900( ) f(z),z €la,b]
pi(z) = [, H(s,po(s))ds + f(z) = [, H(s, f(5))ds + f(x), 2 € [a,b]

If we denote by ¢ the unique solution of (1), according to [3], we have the estimation ||¢ — gpm||B <

L ||<P0 v1|lB,Vm € N*. Taking z = 10L, we obtain the following estimation ||¢ — ¢n||B < W’

Vm € N*, since ||[@o—p1l|lB < m{a:i} fa |H (s, f(s))|ds < M(b— a). Consequently, using the relation
x€|a,

between the Tchebytshev’s and Bielecki’s norms, we obtain, according to condition (iv), the estimation

R- elOL(bfa)

W,Vﬂf S [a,b],Vm €N

(3) lo(z) — om(2)] < |l¢ — oml|B - ¥~ <

3. NUMERICAL METHOD

In order to compute the integrals from (2) we use a perturbed trapeizoidal quadrature rule. The
following quadrature formula was first proposed by N. Obreschkoff [8] in 1940 , (see also [5])

(b—a)?
12

b —a
[ sws = L5 5@ + 501 - L0 - @) + v

and he obtained the remainder estimation (according to [5] page 55), |R(f)| <! 720 ||f @] Recently
,in [1] , for the above quadrature formula, a better remainder estimation which require only the third
derivative: |R(f)] <! 160 ||f’”|| was obtained.

Using a uniform partition of [a,b], Ata =29 < 21 < ... < xp =b, z; = a+ @,Vi =0,n, in [1]
the following quadrature rule

b —a n—1
@ [ s =@ 2 s+ 101 - O 0 - @+ Ral),

was obtained with the remainder estimation |R,(f)| < (11’60”)3 - |1 £, which holds if f € C?[a,b].

We apply the quadrature rule (4) to compute the integrals from (2). For this reason we consider
the function F : [a,b] = R, F(z) = H(z,¢(z)). If H € C3([a,b] x [-r,r]) and f € C3[a,b], H €
C3([a,b] x [-7,7]), f € C?[a,b),it follows that ¢ € C3[a,b] and

F "(z) = ZH (w,0(x)) + 333§3y($ e(x)) - ¢'(x) + 33‘13];’ (z,¢(2)) - [¢" (@) +

+ 3 (2, 0(2)) - [¢' @) + 3L (2, 0(2)) - ¢"(2) + 35H (2, p(2)) - &' (x)-
@"(x) + Gz, p(2)) - 9" (x), Va € [a,b]-

Consequently, we have,

[[F"|] < M3(1+ M + D)3 +4MyMs(1 + M + Dy)?+
+(14+ M + Dy)(M, 3 + 3MsDs) + M, 2Dy + My D3 = M"
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where M = max{H (z,y) : z € [a,b],y € [-r,7]},

2 2
Ml—max{n || | 5 1} M = = max{]| %;3 M=
M, = By, AL |, 1 5 )y
8! ‘H ,
||W||—max{|—axalay$| v € lably € [ rl o1 +a = Jal)

D; = f9 = max{|fD(z)| : = € [a,b]}, for i € {1,2,3}, since || ¢' | M + D1 || ¢" |I< Ma(1+ M+
Dl) —+ _Dz and || (10”’ ||< M2(1 —+ M + Dl) —+ M (1 —+ M —+ Dl) + Ml_Dz + D3.

Starting with the relation, ¢, (z f H(s,pm-1(8))ds + f(x), for every x € [a,b] and using the
quadrature rule (4) with equldlstant knots, we have

em(zr) = B2 H (a, ooi1(a)

) +

+f (@) — L3 (2 (o, o (o

(@) = B (a, pmo1(a)) — 2
(x

Vk =1,n,Ym € N,m > 2, where, ¢o(zr) = f(xr),Vk = 1,n, and ¢ (z) =

k—1
(0, £(@)) +2 5 H s, f(20)) + H (o, f(o0)]) = Qo) 198 (3, f(xy))+
+%f; (@, f(@e))f '(22) — B (a, f(a)) — Y (a, f(a)f '(a)] + Rup = @1 (k) + Rug-

4 4 1"t
For the remainder R,,; we have the estimation: |Rp, ;| < (lb(;()‘;)g- | F" ||< %,Vm €
N*,Vk = 1, n, which does not depend on m or k.

+2 2 H(ml,gom 1(2:) + H(wk, om—1(z1)) ]+

)) (wk,wm (@) - (H(zp, pm—2(z1))+
(@; om—1(a))(H(a, pm-1(a)) + f'(a))] + B

4. THE ALGORITHM

Further by using the succesive approximations (2) and the formulas (5), we present an algorithm
to approximate the solution ¢ of (1). So, we have

pa(ax) = CO[H(a, f(a >>+2'§H<xi,¢1<xi>+R1,i)+H<xk,¢z<xk>+R1,k)]

—% [%f(:vk,%( )+R1 k)+ By H (2,01 (xk) + Rag) - [H(zk, flar))+
F@n)] = L (a, f(a) - <a £(@) - (H(a, f(@) + /()] + fl@n) + R
= (o) -[H(a fla ))+22H<xl,sol(wz))+H(wk,¢1<xk>>] “;2:;;2-

[%z (zk, Pr(ze)) + G (xk,sol(wk)) (H (zx, f(xr)) + (1)) — G2 a, (@) —
Gy (@, f(@) - (H(a, f(@) + f'(a))] + f(zr) + Ro —902(5Uk)+R27kaVk— .

By induction, for m € N, m > 3 we obtain

om(zr) = S Y H (a, f(a) + 22 H(zi, G (25) + Rui) + H(zk, Bnoi (1) +

B )] = S 192 (o, G (4) + B 1k>+ o (mk,gam 1(@k) + Ron1.8)-
[H (@, ez (xh) + R ) + f '(@1)] - (a f(@)) = 2 (a, f(a))-

© (" (o, f(a >>+f<>>1+f<xk>+Rmk_<”— [H(a, f(a ))
+22H<x“¢m 1(@2)) + H (2, G (20))] — S5 - 128 (@, G (1)) +
+oH (et Fme 1(@))(H (@, Gm—z (1)) + f(21)) = Y (a, f(a) = % (a, f(a))-
{(H(a, f(a)) + F'(@)] + f(2x) + Bonp = (k) + R, Ve = T, .

where we used ¢, (z) = H(z, om_1(z)) + f '(z), Yz € [a,b],Ym € N.
In order to estimate the remainders, if we denote M = My(1 + M + D), it we obtain, |Ry x| <

=M 74 | Ro| < |Rog| +L(0—a)+ L2 Ry (| < oM Ty 4 g gy G gy T

160n3 12n2 160n3 12n2
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Third order method Trapezoidal method

t,  &=0.0001 £ =0.0001

0  $:(0.000000)=0.000000 g (0.000000)=0.000000
1 $4(0.013333)=0.000181 ¢(0.013333)=0.000181
2 $4(0.026667)=0.000737 &(0.026667)=0.000737
3 $4(0.040000)=0.001688 ¢ (0.040000)=0.001688
4 $,(0.053333)=0.003055 3s(0.053333)=0.003055
5 $4(0.066667)=0.004860 (0.066667)=0.004860
6 $4(0.080000)=0.007126 F(0.080000)=0.007126
7 $4(0.093333)=0.009875 ¢(0.093333)=0.009875
8  $4(0.106667)=0.013134 F(0.106667)=0.013134
9 $,(0.120000)=0.016927 F(0.120000)=0.016927
10 34(0.133333)=0.021281 4(0.133333)=0.021281
11 34(0.146667)=0.026224 4(0.146667)=0.026224
12 34(0.160000)=0.031784 4(0.160000)=0.031784
13 34(0.173333)=0.037992 4(0.173333)=0.037992
14 34 (0.186667)=0.044878 i (0.186667)=0.044879
15 34(0.200000)=0.052476 4(0.200000)=0.052476

TABLE 1

For Ym € N,m > 3 and Vk = 1,n, we obtain by induction,

(b—a)y*M " (1—[L(b—a)+ L= M m)

12n2

16003 - (1 — [L(b — a) + L2201

12n2

| R k| <

So, the remainder estimation is
(b _ a)4M 1
160n3(1 — [L(b — a) + =220y

12n2

(7) |Ryni| < , VmeN,m >3, Vk =

In this way we obtain the main result of our paper

Theorem 2. Under the hypotheses of Theorem 1, if L(b—a) + (b12a)2 <1, HeC¥a,b] x[-r,r])
and f € C?[a,b] the exact solution ¢ of equation (1) is approzimated by the sequence (P (Tk))men+,

given by (6) on the knots x, k = 1,n , with the error estimation
R - el0L(b—a) (b _ a)4M "
-t =
9-10m=1 " 160n3(1 — [L(b — a) + LM

12n2

(8) lo(zr) — Pm(zi)] <

Vk=1,n,Vm e N* m > 2.

Proof. We have
lo(@r) — @m(@r)| < le(@r) — @m(ze)| + lom(zr) — Em(@r)] -
Since, |om(zr) — Pm(zr)| = |I§m7k|, Vk =1,n,Ym € N*, from (7) and (3) we obtain (8). O

As numerical example we choose a = 0,b = 0.5, f(z) = 2%, H(z,y) = 2>+ 3siny, n = 15,and obtain,
in the following table, the values @, (zx) , k = 1,n ,where m € N* is such that |@p, (zr) — Pm—1(zk)| < €
for each k¥ = 1,n. Comparing with this third order method, we need only 4 iterations while the
trapezoidal method requires 6 iterations.
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1. INTRODUCTION

In this paper we consider a model for the spread of certain infections disease with a contact rate
that varies seasonally. This model is governed by the following integro-differential equation

1) z(t)= / f (5.2 (5) 2 () ds

(i) 0<t < T, with T = I for a positive integer [;
(i) x(t) is the proportion of infectives in the populatlon at time t;
(iii) 7 is the length of time in which an individual remainds 1nfect10us
(iv) ' (t) is the speed of infection spreading at moment ¢;
(v)
We study the existence and uniqueness of a positive solution for equation (1) and give a numerical
method to approximate this solution.
A similary integral equation which models the same problem

@  x(t)= / f (s, (s)) ds

has been considered in [3], [5], [12], [2], [15], [12] where the sufficent conditions are given for the existence
of nontrivial periodic nonnegative and continous solutions for this equation in case of a periodic contact
rate: f(t+w,z) = f(t,z), f(t,0) = 0. The tools were: Banach fixed point principle in [12], topological
fixed point theorems in [3], [5], [2], [15], fixed point index theory in [5] and monotone tehnique in [5],
[2], [12]. Also, a system of integral equations in the form (2) has been studied in [2] and [13] using:
the monotone tehnique in [2] and Perov fixed point theorem and data dependence on the parameter
in [13]. The existence of a positive solution of (2) has been studied in [1] using the Leray-Schauder
continuation principle. Using the Lipschitz’s condition, in [6], the existence and uniqueness of the
positive, bounded solution for (2) is obtained and a numerical method to approximate this solution
is given. This numerical method is based on the sequence of successive approximations and on the
trapezoidal quadrature rule.
In the following, if X is a nonempty set, by a generalized metric d on X we understand a function

d: X x X — R" which fulfils the following:

(gml) Og» < d(z,y),Vz,y € X and d(z,y) = Or» & x = y;

(gm2) d(z,y) =d(y,z),Vr,y € X;

f(t,x(t),x' (t)) is the proportion of new infectives per unit time.
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(gm3) d(z,y) <d(z,z) +d(z,y),V2,y,2 € X,
where, for z = (1,22, xy) and y = (y1,¥2,---,Yn) from R" we have z < y & x; < y;, for any
i = 1,n. The pair (X, d) will be called generalized metric space.

2. EXISTENCE AND UNIQUENESS

Denote by X the product space C' [—7,T] x C [—7,T] which is generalized metric space with the
Cauchy metric type given by
do: X x X = R, do ((21,41) , (22,92)) = (|21 = 22|, [ly2 — ) ,

where [|u|| = Iinax } |u (t)|, for any u € C' [-7,T]N C[-7,T].
te[—7,T
Also, we consider Xy = {(z,y) € X: x(¢t) > 0, for any t € [—7,T]}. Since X is closed in X and X
is a complete metric space we infer that X is a complete metric space too.
In the following we study the initial value problem

T 29,27 () ds, for 1 € 0,71
p(t), fort € [-7,0]

for known ¢ € C* [—7,0]. We suppose that the following conditions hold:
(C1) (boundness conditions) Im, M € R such that 0 < m < f(t,u,v) < M, Vt € [-7,T],Vu €
[0,00), Vv € R, Imy, M; € R such that 0 <my < ¢ (t) < My, Vt € [-1,0];
(Cs) (Lipschitz condition) f € C ([-7,T] % [0,00) x R) and Ja, § > 0 such that
| f (tu,v) — f(tu',v)|<alu—u |+8|v—2" |, Vt € [-7,T],Vu,u €[0,00),Vv,v" € R;
0
(C3) (compatibility conditions) ¢ (0) = [ f(s,¢(s), ¢’ (s))ds and

¢ (0) = £(0,(0),¢ (0)) = f (=70 (=7) ,¢' (=7)).

We study the existence and uniqueness of the positive solution of (18) in the above hypotheses by
using Perov’s fixed point theorem [8] (see also [4], [7])

Theorem 1. (PEROV) Let (X,d) be a complete generalized metric space. If T : X — X is a map for
which there exists a matrizv A € Ma (R) such that:

(i) d(T'(2),T (y)) < Ad(z,y), Va,y € X;

(i) the eigenvalues of A lie in the unit disc from R?,
then:

(1) T has a unique fized point x*;

(2) the sequence of successive approximations x,, = T™ (zo) converges to x* for any x¢ € X;

(3) the estimation

d (zm,z*) < A™ (I, — A)™" d (2o, 1) ,Vm € N* holds.
If we differentiate (18) with respect ¢ and denote y (t) = 2’ () we obtain

y(t)=ftz@),yt) - fE-—ralt—1),y(t-7),
for t € [0,7] and y (¢t) = ¢' (t), for t € [—7,0].
Let T': X, — X be the map given by

3 z)=

T TG as e
@ T@n®=3 \ fer®y0) - 7¢-ret-7,y0-)

(30 (t) v(p’ (t)) S [_Ta 0] '

From hypotheses (C;) we have that T'(Xy) C X,. For any (21,91),(22,y2) € X4 we estimate
do ((z1,91) 5 (22,92)).
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If t € [0,T] we have
dc (T (xlayl) 7T ($27y2)) =

b

( max ‘ J fs,z1(s),y (s))ds—t}f(s,xg (s),y2 (5)) ds

t€[0,T]

max |f(t zy (), y1 ()~ fE—Tzi (t—7), 91 (t —7)—f(t,22 () ,y2 (1)) +f (t —Ty22 (t —7) 42 (t — 7)) |

t€[0,T]

t Ca

J f(s,z1(s),y1(s))ds — } f(s,22(5),y2(s))ds| <

t—1 t—1

< J (@ler () =22 (9] + Bl (5) — 12 (9 s <

<at |z — x| + BT (lyr — val|-
Hence

<

ff 621 (5) 1 () ds — [ F (5222 (5) 92 (5)) ds

t—1

max

(5) 1€[0,17
<ar ||$1 — za2|| + BT [|y1 — w2

(f 2 ()5 () —fE—T2 (t—7), 1 (t—7))) —

Ca
—(ftz2(t),y2 (1) = f—T22(t—7),y2(t —17)))| <
<alz () =22 ()| + By () —y2 (O] +
talg(t—T)—22 @t —T7)|+Blp1(t—7) —y2 (t = 7)| <
S?||$1—$2||+23||y1—y2||-

(6 tgfglx lf (e (), () —flE—To1(t—7),00 (t—7)) —

—f (22 (t),y2 () + f(t =722 (= 7) 2 (t — 7)) | e7(H7) <
<2aller — @l + 26 lyr — vall -

If t € [-7,0] we have
(1) do (T (z1,y1), T (2, 92)) (t) = (0,0).
From (5), (6), (7) we have
) do (T (z1,y1),T (22,92)) < Adc ((w1,91) , (22,92)) ,

_( ar BT
where A = ( 2% 23
Here is our main result.

>. The eigenvalues of A are Ay = 0 and \s = 25 + ar.

Theorem 2. If the conditions Cy, Cs, Cs for (18) hold and 28 + at < 1 in Cy then the initial value
problem (18) has an unique bounded solution z*, in X, .

Proof. By Theorem 1 for the map T defined by (19) from
yi

(8) and by Theorem 1 the existence and
uniqueness of solution follow. Denote by x* (t) = (zf (t),y7 (t

(t)) this solution.
From C; we have 0 < mr < 27 (t) = f f(s,zt(s),y5(s))ds < Mr, ¥Vt € [0,T] and 0 < m; <

xy (t) < My, Vt € [-7,0], hence z7 is bounded
Let us prove that (z7)'(t) = yi(t),Vt € [-7,T]. To this aim, in the case t € [—7,0], from (19) we
have, T (a7 (), 7 (1)) = ((), ' (1)) = (a7 (1), (1)), therefor, 77 (£) = (t) and 7 (t) = '(£), which
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means (z7)'(t) = y7(¢). In the case t € [0,T], from (19) we have, (z7 (¢),y7 (t)) =T (27 (t),y7 (¢)) and

T 1) ) s
f(t,:lf(t),y(t)) _f(t_Tax(t_T)ay(t_T))

T (z7 (1), 01 (1) =

and then

x

=%

(0= J Flsa(s)u(s)ds
i) = F(r (0,5 0) = £ (= 7.2 = 1),y (= 7)
) =50 0

Corollary 3. Under the hypotheses of Theorem 6 the solution x* (t) of (18), which is obtained by the
successive approrimations method starting with an arbitrary point x° = (zo,y0) € X, satisfies the
inequality

Am71

where z* =T (2°), 2™ =T (2™ '), 2™ = (T, Ym), Ym € N*, 2° = (20, 90).

b

which means (z7)'(¢

Proof. By Theorem 1, under the hypotheses of Theorem6 we have that dg (z™,z*) < A™ (I — A)™" dp (z!,20),
Vm € N*. For the matrix A, given in (8), we have A™ = \J' "' A, Vm € N* and

(I—A) ' =1 <1_2ﬂ pr ) 0

=22 \ 2a 1-ar

3. THE APPROXIMATION OF THE SOLUTION

By Theorem 6 the solution of (18) can be obtained by successive approximation method starting
with an arbitrary element of X,. For this reason, we compute the terms by means of the sequence
of successive approximations z™ (t) = (2, (t) ,ym (1)), YVm € N . In the case t € [—7,0] we have that
T (1) = @ (t) and yn, (1) = ¢' (t), for Ym € N. In the case t € [0,7] we have that z (t) = ¢ (0),

yo (1) = ¢'(0),

(10)  mp (1) = /f(s,acm_l (), ym_r () ds, ¥m € N*

t—1

Ym (1) = f (txm—1 (8) ,ym—1 () = f (¢ = T, @1 (t = 7) ,ym—1 (t = 7)), Vm € N".
In order to compute the above integrals we use a quadrature rule. Let A,, be a uniform partition of
the interval [-7,0], A, : =T =tg <t; < ... < t, =0, with h =1¢; —t;_1, Vi=1,n.
Suppose that the values of the function ¢ on the knots ¢;, i = 0,7, and the values of the function ¢’
on the same knots are known.
In order to compute the integrals from (10) we use the trapezoidal type quadrature rule (as in [1]):

b
(11) /F(t) dt = b;

a

a
n

F(a) + QHE_:F (t:) + F (b)| + Ry (F),

where t; = a + @i, i =0,n and |R, (F)| < (b;a)w(F, b=4) with the modulus of continuity of F.
Since lim 22 =0 and F is continuous, we have that lim w(F,%2) = 0.
n—00 n—00

Let F:[-7,T] = R, F(t) = f(t,z(t),y(t)) which is continous by virtue of condition C; and, for
any m € N, denote F, (t) = f (t, 2 (t) ,ym (1)), for t € [-7,T].
For the interval [0, T'] where T = I, consider the uniform partition A!, : 0 = ¢, < tpy1 < ... <ty =T,

withg=n+1+1l-nand tj;, —t; =h=7%,Vj =n,q—1. Obviously t;, —7 = ty—,, k =7,q and

n’
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A, UA! is a uniform partition of the interval [—7,T]. For any k = n + 1,q in the interval [ty — T, tx]
we find n knots of the partition A, U A!. Applying (11) to compute the integrals (10) we obtain

m (tr) = f f(s,2m=1(8),Ym—-1(8))ds =
(12) T n—1
= 55 [Fm—1 (t) +2 ﬂmel (thtj = 7) + Fne1 (te = 7)) + 7o (f) 5

‘77
Vk=n+1,q, Vm € N, with the estimation |r,, » (f)| < Fw(Fn-1,5,) which does not depend on & .
On the knots we have the values

zo (ty) = { wg(ao()tf)k,i ;E’—ﬁq . yo(t) = { £ ’j -

and Y, (tg) = Frneq (b)) = Frnm1 (e — 7)), Ve =n + 1,¢q, Ym € N*.
Using (12) for m = 1,2 we have

T (tk) = ﬁ[Fg (tk) + QHiIIFO (tk+j — 7') + Fy (tk - T)] + 71k (f) = _1(tk) + 71k (f) ,Vek=n+1,q.
j=

We have y1 (tr) = Fo (tr) —Fo (tx — 7) =71 (tr) , VE =n + 1, ¢, and x» (tg) = 2 (t) + 2.1 (f), Yk =
n+1,q.
y2 (tk) = f(te, @1 (tr),y1(tr)) — f(te = 721 (te — 7),y1(tk — 7)) + 62,1(f) = w2 (&) + 02,k (f). For the
remainders we have the estimates
- n—1
[roa ] < latris (Dl +alrismn (DI +2 Z alrrsesn (N

]: _—

+ |T2,k (f)| S %T2UJ(F0, ﬁ) + %W(Fla ﬁ):Vk =n+ 1aqa
and |02 (f)] < a|rie (f)| + alrie—n (f)| < a7 - w(Fo, 3-). By induction, for m > 3 we have

(13)

D (14) = 5 [Pt () 4 25 et by = 7) + Fovca (6 = 7))+ v (1) =
P2

U (s T 1 ) + T T () U 1 C8) + S 1k(F)) + (T 1 ()
Y P E— n—1 -
agy TR (DYt (ion) +Ont i) +2 X F i T (=)
- Jj=
i () Y (i n) + Ot n ()] 4 o (F) = 551

axm—l(tk)a aym—l(tk)) + f(tk—na wm—l(tk—n)a ym—l(tk—n)) +2 Zlf(tk+j_"’
j=

s Tm—1 (tk+jfn)7 yM71(tk+]‘7n))] + 'r'm,k(f) =Tm (tk) + Tm,k(f):

and Y (tr) = f(tk, Tm—1(tk), Ym—-1(tr)) — f(tk = Ty @m-1(tr = 7), Ym—1(tk — 7)) +m k() = ym(tr) +
Om,k(f), Vk = n + 1, q. To estimate the remainders, for m € N;m > 3 and for any k = n + 1, ¢, we have
the reccurent relations:

0m ()] < 20 [Tt k()| + 28 16m-1.4(S)|
[Fni ()| < 76 frr 1P| + 78 1m 1.4 ()] + Pt (D
Denote by p,, the the least upper bound for ‘m‘ and |8, k(f)], Vm € N*,Vk =n + 1,q.
We impose the following condition: 3y > 0 such that
(15)  |f(t1,u,v) — f(ta,u,v)| < vy|t1 — ta|, Vt1,t2 € [-7,T],Yu > 0,Yv € R.

If o € C?[-7,0],let us D,D' € R, D = ||¢'||, D' = ||¢"||. Then in the above condition, the functions
Fy and F; are Lipschitzian with Lipschitz’s constants Lo =~y +a-D + 8- D', L1 = max(Lg,y + 8 +
BLo 4+ 2aM,v + 2aM + 237). By induction for m € N*, we suppose that F,,_; is Lipschitzian with a
constant L,,_1, and obtain successively, |z, (t1) — 2 (t2)| < 2M - |t — ta| , Vi1, t2 € [-7,T],

lym (t1) — ym (t2)| < [F—1(t1) — F—a(t2)| +
+ |Fm_1(t1 — T) — Fm_l(tg — T)| <2Lp-1 |t1 — t2|, Vti,ts € [O,T],
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and since ¢ € C?[—7,0] and ||¢"|| < L,,—1we obtain that |y, (t1) — ym(t2)| < 2Lp—1 |t1 — ta], Vi1, 12 €
[—7,T]. Then for Vit,ty € [—7,T] we have:

[Fim (t1) = Fin(t2)] < v[t1 = tof + afzm(t) — zm(t2)[ +

+Bym(t1) = ym(t2)| < (v +20M +2BLy—1) - [t1 — 12| .
Now, we can infer that F,, is Lipschitzian with a Lipschitz constant L,, = v+2aM +28L,,_1,Vm € N*.
We can see that Ly, 11 — L,, =26( Ly, — Lyn—1) = ... = (28)™(L; — Lg) > 0, since Ly > Lo, Ym € N*,
and then the sequence (Ly,),,cn- 18 increasing. On the other hand we have,

|Lm+p — Lp| < |Lm+p B Lm+p—1| + oot [ L1 — Ln| < [(28)™
+(28)™ T 4 (28) P | Ly - Lol = (26)™[1+ 2ﬂ+
ot (28771 | Ly — Lol = (28)™ - 52 - |Ly — Lo

If 3 < 3 then hm |Lm+p — Lm| = 0 and the sequence (Ly,),,cn- converge. Then 3L > 0 such that

L= IE,H Ly, Consequently,L < L, Vm € N and the estimation |ry, 1 (f)| < Fw(Fn-1,5,) lead to
m [ee]
7,k ()] < L4:L , Vm € N*,Vk = n + 1, q. Moreover, 1fa<§and7<1then
Q T T T T Lt? Lt?
< 2r20(Fy, )+ Lu(F, )< I = ==
o] < Sr2w(Fo, ) + ZwlFi, o) < Zlar + D= < (r+ 1)
o) < @l (D] +afraacn ()] < 20 ZulFo, ) < 22
2.k S QT k QT k—n S 2@ 2W 0’2n =
and
— L7 9 L7
< . - =
‘r37k(f)‘_7'(a+ﬁ) p2 + n <(rF4+T1+ )4n

By induction, for m € N;m > 3 and Vk = n + 1, ¢, we have,

()] < 7@ [rm s k()] + 8 16ms (P +lrma (9] <

(16) < 7(a+B)pmoar + Lo <r(rm 2 4 472 41+ 1)L 4 LT
Y O LT L72
- 1—7 An = dn(li-T1) -

Theorem 4. Under the hypotheses of Theorem6 and condition 15, if max(a,f) < %,T < 1 and

¢ € C?[—7,0], then the solution x; of the initial value problem (18) is approzimated by the terms of
the sequence (zm (tk)) N from (14) with the error
me

Ayt L7
1(te) — tr)| < - [(1=28) (M M 2M + D -
75 0) = 2 ()] < T2+ 11— 26)(M7 4+ My) + Br(2M + D)] + ot
Vm e N VE=n+1,q.
Proof. Tt follows from Corollary 3 and inequality (16). O
3.1. Example Consider the functions f : [-7,7] X [0,00) x R = R, ¢ : [-7,0] = R, f(t,y,2) =
at + b+ % , p(t) = K(t+ 1), with a,b,¢,d, K, > 0 Such functions satisfy the conditions
C1 — C3 and (15). We illustrate the algorithm, choosing 7 = 2,7 = 3,K =10, ¢ = 15, d = §,( =
dKT—c((341)

V3,0 = 13—0 + @t b=10+ %a and n = 6. Then ¢ = 31 and we obtain the values z,, (t;)

and y,, (tx) from (14), where m € N is such that for each ¥k = n + 1,q we have for an ¢ > 0 :

Zm (8) — T (tk)‘ < ¢ and ‘ym () — gmr (G6)| <&, VE=n¥1,q.
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1 1.25 10.0
2 2.5 10.0
3 3.75 10.0
4 5.0 10.0
) 6.25 10.0
6 7.5 10.0
7 45.681887 10.001657
8  54.980827  9.999766

9 64.279593  9.99887
10 73.57829 9.998671
11 82.876995 9.998981
12 92175762  9.999667
13 101.476399 10.028906
14 110.778973 10.030654
15 120.081726 10.031778
16 129.384597 10.032533
17 138.687548 10.03306
18 147.990555 10.033438
19 157.293603 10.033709
20 166.596681 10.033922
21 175.899783 10.034086
22 185.202903 10.034215
23 194.406038 10.034318
24 203.809184 10.034402
25 213.11234  10.03447
26 222.415504 10.034526
27 231.718674 10.034573
28 241.021849 10.034613
29 250.325029 10.034647
30 259.628213 10.034676
31 268.931401 10.034701

TABLE 1
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Abstract. We prove that the C*-algebra of the locally compact second countable
transitive groupoid G is *-isomorphic to the C*-algebra of the groupoid G(®) x H x G(®)
endowed to the Haar system {e, X vy % pu}, where H is the isotropy group G at
any unit u € G, g, is the unit point mass at u, vy is a Haar measure on H,
and g is a quasi-invariant Radon measure with respect to the Haar system of G.
The C* -algebra of G(®) x H x G is easily seen to be *-isomorphic to C* (H) ®
K (L? (n)), where C* (H) denotes the group C*-algebra of H, and K (L? (1)) denotes
the compact operators on L? (u). Therefore the C*-algebra of G is *-isomorphic to
C* (H)®K (L? (1)). Thus we regain a result of P. Muhly, J. Renault and D. Williams
(Theorem 3.1, p. 16 [7]).

Keywords: transitive groupoid, trivial groupoid, groupoid isomorphism, -
isomorphism, C*-algebra.

2000 Mathematics Subject Classification: 46105, 22A22

1. INTRODUCTION

The construction of the C*-algebra of a groupoid extends the case of a group. The space of con-
tinuous functions with compact support on groupoid is made into a x-algebra and endowed with the
smallest C*-norm making its representations continuous. For this %-algebra the multiplication is con-
volution. For defining the convolution on a locally compact groupoid, one needs an analogue of Haar
measure on locally compact groups. This analogue is a system of measures, called Haar system, subject
to suitable invariance and smoothness conditions called respectively ”left invariance” and ” continuity”.
Unlike the case of locally compact group, Haar system on groupoid need not exist, and if it does, it
will not usually be unique. However, on locally compact second countable groupoids one can con-
struct systems of measures satisfying ”left invariance” condition. But the continuity assumption has
topological consequences for groupoid. It entails that the range map (and hence the domain map) is
open (Proposition I. 4 [13]). A. K. Seda ([12]) has proved that the ”continuity” condition is crucial in
construction of the groupoid C*-algebra . In this paper we only use locally compact second countable
transitive groupoids. For this kind of groupoids the ”continuity” condition is a consequence of the ”left
invariance” condition (Theorem 4.4 [2] or Theorem 2.2 B p. 8 [7] and Theorem 2 p. 430 [11]). Thus
for this kind of groupoids always there are Haar systems. As in the general case, the Haar system
need not to be unique. A result of P. Muhly, J. Renault and D. Williams (Theorem 2.8 p. 10 [7])
states that the C*-algebras associated with two different Haar systems on a locally compact second
countable groupoid (not necessarily transitive) are strongly Morita equivalent. It is not known if they
are x-isomorphic. For a transitive groupoid G, P. Muhly, J. Renault and D. Williams have showed that
then the C*-algebra of G is isomorphic to C* (H) ® K (L? (n)), where H is the isotropy group G at
any unit v € G(©), p is an essentially unique measure on G(®), C* (H) denotes the group C*-algebra
of H, and K (L? (n)) denotes the compact operators on L? (i) . For proving that result they firstly
established that C* (G) and C* (H) are strong Morita equivalent via a C* (H) module X;. As a
consequence the C*-algebra of G is the imprimitivity algebra of X;. Then they needed another C* (H)
module X, whose imprimitivity algebrais C* (H)® K (L? (p)) for a suitable measure . By this result,
it follows that the C*-algebras associate with two Haar systems on a locally compact second countable
transitive groupoid are s-isomorphic.



42

We obtain the isomorphism between the C*-algebra of G and C* (H) @ K (L? (1)) more directly:
we show that the C*-algebra of G is isomorphic with the C*-algebra of the groupoid G(® x H x G(©
endowed with the Haar system {d,, x vgy X p},where vy is a Haar measure on H, and p is quasi invariant
probability measure with respect to the Haar system of G. In order to prove that, we construct a
groupoid Borel isomorphism ¢ between G and G(©) x H x G(®) which carry the Haar system of G to a
Haar system of G(©) x H x G© of the form {0, x vy x p}.Then we use the fact that any compactly
supported Borel bounded function can be viewed as an element of the C*- algebra ( Proposition 4, p.
82, Proposition 5, p. 86 [3]) and we prove that the f — ¢ o f can be extended to a *-isomorphism of
C*-algebras.

2. HAAR SYSTEMS ON G AND HAAR SYSTEMS ON THE TRIVIAL GROUPOID G(*) x G¢ x G(¥)

Throughout this paper G will stand for a second countable locally compact transitive groupoid and
{v*, u € G} a Haar system on G. We use the terminology and notation of [10].

According to Lemma 4.5, p. 277 [9] or Proposition 1.3.8 [10] all quasi-invariant measures carried by
an orbit [u] are equivalent. Since the groupoid G is transitive, it follows that it has a single orbit, and
therefore all quasi-invariant measures are equivalent.

In Section 3 [1], we have proved that we can choose a quasi-invariant probability measure p such
that there exists a family {I/u’v, u,v € G(O)} of o-finite measures on G with the following properties:

(1) vy, is supported on G¥, and v, # 0, for all u,v € G().
(2) For all f > 0 Borel on G,

(u,v) = /f(y) Ay (y) [: GO x GO — ﬁ]

is an extended real-valued Borel function.
(3) For all f > 0 Borel on G,

/f (zy) dvg(a) /f ) dVy(2),0 (y) for allz € G, v e GO,

(4) For all uw in GO, v* = [ vy, ydu (v).

Moreover, if A is the modular function of u, then A may be chosen to be a strict homomorphisms
and

5. For all f > 0 Borel on G,

/f (yz) dvy p(2) (¥ /f ) AV a() (¥) forallz € G, u € GV
6. For all f > 0 Borel on G,

/ F () dvan (4) = / F) A (™) dve () for all u,v € GO

A similar decomposition for more general groupoids can be found in [4].
Let 0 : G — R} be a strict homomorphism and {ﬂu’v, u,v € G(O)}a system of measures on G,
satisfying:

(7): For all f > 0 Borel on G,

/ f (2y) dBatay (4) = / 7 W) dBriay (4)

for all 2 € G, v € G
(#4): For all f > 0 Borel on G,

for all z € G, u € G
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Using the uniqueness of the Haar measure on the locally compact group G}, and arguing as in Section
2 [1], it results that there exists a positive function h : G(®) — R such that

Vyy = h(v)Puy foralu,ve GO
h(r(z))A(z) = 6(z)h(d(z)) for all z € G.

In [3] (p. 84). we have constructed § : G —+ R’ and {Bum, u,v € G(U)} with the above properties and
such that

sup By, (K) < o0, sup d (z) < oo for all compact set K C G.
u,v zeEK

We sketch that construction. We need the following lemma :

Lemma 1. Let X and Y be metric spaces and let f : X — Y. Let A be a o-compact subset of X, and
K, Ko, ..., Kp,... be a sequence of compact sets whose union is A. If f|k, is continuous for each n,
then there is a Borel function g : f (A) — A such that g (f (K,,)) C K, for eachn and f (g (y)) =y for

ally € f(A).

Lemma 1 is a slight reformulation (according to [8, Lemma 4.12. p. 99]), based on a result of Federer
and Morse [5], of a lemma proved by Mackey (Lemma 1.1 [6]). We call the function g in the Lemma 1 a
regular Borel cross section of f. let e be a unit in G(9). Applying Lemma 1 to the continuous surjection
d: G — GO it follows that there is a regular Borel cross section ¢ : G(© — G°. By Theorem 2.2
B/p. 8 [7] or Corollary 5.7 [2], if G is a transitive locally compact second countable groupoid, then the
application d : G* — G© is open. Hence for any compact subset K of G(©) there is a compact subset
L in G" such that K is contained in d (L). Thus the closure of ¢ (K) is a compact set for all compact
sets K.

Let Uy be a closed symmetric d-relatively compact neighborhood of G(%), U be an open symmetric
d-relatively compact neighborhood of G(9) such that Uy C U, and fo : G — [0, 1] be a continuous
function with supp (f) C U and such that f (z) = 1 for all x € Uy. Choose . a (left) Haar measure on
the locally compact group G¢ such that

/fo (y) dpe (y) = 1.
Define 3, and ¢ by

/f (Y) Buw (y) = /f (0 (u)ﬂ yo ('u)) dpe (y) , for all f > 0 Borel
)

W = A (o)) ) foralyed

where A, is the modular function on the locally compact group G¢. Using the same argument as

in [3] (p. 85), we can prove that the function h (the connection between {8y, u,v € G} and
{vu’v, u,v € G(U)}) is p-integrable on the compact subsets of G(©), i.e. for all compact subsets K of
G

/lK(v)h(v)du(v) < o0

Remark 2. Let e be a unit. Let us consider the trivial groupoid G(®) x G¢ x G(°), The topology of
GO x G¢ x G is the product topology, and the operations are
(u,z,0) (v,y,w) = (u,zy,w)
(w,z,0v)"" = (v,z,u).
Under this structure G(© x G¢ x GO is a locally compact second countable groupoid. The system of

measures {Eu X e X h-p, u € G(O)} is Haar system on this groupoid.
It is mot hard to prove that the C*-algebra of G\©) x G¢ x G\ is isomorphic to C* (G¢) @ K (L2 (w)).
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Proposition 3. Let G be a locally compact second countable transitive groupoid. Let e be a unit and
o : G = G* be a reqular Borel cross section of d : G¢ = G©), Then ¢ : G = G(© x G¢ x GO defined
by

6(2) = (r (@) .0 (r (@) 2o (d(2)) ™" ,d(2))
is a Borel isomorphism which transport the Haar system of G into a Haar system of G(©) x G¢ % G

of the form {Eu X e X A\, u € G(O)}, where e, is the unit point mass at u € GO, p, is a Hoar measure
on G¢, and X is a suitable Radon measure on G'©)

Proof. Straightforward calculation. The Haar system {V“, u € G(O)} is carried to {e, X pe X h- 1,
u € G(O)}. O

3. ISOMORPHISM FOR TRANSITIVE GROUPOID C*-ALGEBRAS
The following proposition was proved in [3]( Proposition 4/p. 82, Proposition 5/p. 86 )

Proposition 4. With the notation of preceding section, let vy = A_%,u and f € L' (G,vo) such that

// (/'f@)'A(w)‘%de (w))2du(’v)du(u) < .

Then there is a sequence (fy),,, in C.(G) such that
lim”f_anU 0.

where for any g € L' (G, ), ||gll;; is defined by

||g||II—Sup{/|g k(r(z))|dvo (z /|J| dp = /|k| du_l}

Proposition 5. If f € L' (G, 1) and

//(/'f(x)m@;d”w ($)>2du(v)du(u)<oo.

then f can be viewed as an element in C* (G).

Remark 6. In particular, any function in B.(G), the space of compactly supported Borel bounded
function on G, can be viewed as an element in C* (G).

Theorem 7. Let G be a locally compact second countable transitive groupoid. Let {l/“,u € G(O)} be a
Haar system on G. Let e be a unit and let us endow the trivial groupoid G x G¢ % G with the Haar
system {Eu X e X hy, u € G(O)}, where pe and h are chosen as in Section 2. Then the C*-algebra of
G associated with the Haar system {v*,u € GV} and the C*-algebra of G\ x G¢ x G©) associated
with the Haar system {Eu X e X hu, u € G(O)} are x-isomorphic.

Proof. Let ¢ be the groupoid isomorphism defined in Proposition 3. Any nondegenerate representation
of C. (G) is equivalent with the integrated form of a representation of G (Theorem 1.21 /pg.65 [10],
or Theorem 3.29 /pg.74 [8]). The same thing is true for G(®) x G¢ x GV, Since ¢ : G — G© x
G¢ x G9) is a Borel groupoid isomorphism, L — L o ¢ is an one to one correspondence between the
representation of the two groupoids Also ¢ carry the Haar system{l/“, u € G(O)} into the Haar system
{ew % pre x b, u € GO} . Therefore @ : B, (G© x G¢ x GV)) — B, (G) defined by

®(f)=1fo9
is a *-isomorphism which can be extended to the C* (G(¥) x G¢ x G()). O
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Abstract. In this paper the the stability of the cubic functional equation f(z+2y)+
3f(z) =3f(z+vy)+ f(xr—vy)+6f(y) in the line of Hyers, Ulam, Rassias and Gavruta
is investigated.
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1. INTRODUCTION

The stability problem of functional equations originated from a question of S. Ulam concerning the
stability of a group homomorphism:

Let (G1,0) be a group and let (G2, %) be a metric group with a metric d(-,-). Given € > 0, does there
exist a 6 > 0 such that if f: Gy — G2 satisfies

d(f(zoy), f(z)* f(y)) <9, for all z,y € G,
then there exists a homomorphism h : G; — G5 with

d(f(z),h(z)) <eg, forall z € G17

D. H. Hyers [4] gave a first affirmative answer to the Ulam’s question, for Banach spaces. Let
f: By — E5 be a mapping, where E1 and Ey are Banach spaces, such that

1f(z+y) = fz) = fFy)ll <6,
for all z,y € Ey, and for some & > 0. Then there exists a unique additive mapping T : E; — FEs
satisfying

||f(z) —T(z)|] <4, for all z € E;.

Moreover, if f(tz)is continuous in t for each fized x, then the mapping T is linear.

In 1978, Th. M. Rassias [9] proved the more general result:

Let f: E; — E5 be a mapping, where Ey is a real normed space and E> is a Banach space. Assume
that there exist § > 0 and p € [0,1) such that

1f(z+y) = f(@) = fOI <0~ (=] + [|yll”) ,for all z,y € Ej.

Then there exists a unique additive mapping T : Ey — Essuch that
20
-T <
1) = T < 5o
Moreover, if f(tx) is continuous in t for each fized x € Ey, then the mapping T is linear.
Further generalizations of the above results are obtained by P. Gavruta [1].

Let G be an abelian group, let (E,||-||) be a Banach space and let ¢ : G x G — [0,00) be a mapping
such that

[|z]|?, for all z € Ej.

O(z,y) := Z 2= (k41 2k, 2Fy) < o0, for all z,y € G.
k=0

If f: G — E satisfies
||f(£17 + y) - f(ilf) - f(y)” S 80(37;?/), for all T,y € Ga
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then there exists a unique mapping T : G — E with the properties
Tx+y) =T(x)+T(y), forall z,y € G
and
[|f(z) — T(z)]| < ®(x,z), for all z € G.
For other approaches concerning the Hyers-Ulam-Rassias stability see also the books [5] and [7].

In [8] J. M. Rassias introduced a new definition of a cubic mappings:

Definition 1. Let X and Y two given vector spaces. A mapping C : X — Y is called cubic if C
satisfies the functional equation

(1) fl@+2y)+3f(z) - 3f(z+y) - flz—y) —6f(y) =0,
for all z,y € X.

In [8] he proved that a cubic mapping C : X — Y, satisfying functional equation (1), has the
properties:
C is an odd mapping, hence equation C(—z) = —C(x) holds for all z € X;

1
(2) C(z) = S—nC(Q"ac), for all z € X and for all n € N.

The next Hyers-Ulam stability theorem for the functional equation (1) is proved in [§]:

Theorem 2. Let X be a normed linear space and let Y be a real complete normed linear space. If the
mapping f : X = Y satisfies the inequality
If(z+2y) +3f(z) = 3f(z+y) — fle—y) - 6fW)ll < ¢

for all z,y € X, (with a constant c independent by x and y), then there exists a unique cubic mapping
C: X =Y, which is defined by the limit

. 1 n
C(z) = n]g& 8_"f(2 x)
for all x € X, and satisfies the relation

11
— < =
1C(2) = f@)]] < ;3¢
Recently, P. Gavruta and L. Cadariu [2], studied a modified Hyers-Ulam-Rassias stability for the
functional equation (1). They generalized the previous result of J.M. Rassias in the following form:

for all x € X.

Theorem 3. Let G be an abelian group, let X be a Banach space and let ¢ : G x G — [0,00) be a
mapping such that

oo
1
O(w,y) =) g P21, 2%y) < 0,
n=0

forall z,y € G.
If f: G — X is a mapping which satisfies

If(z+2y) +3f(z) = 3f(z +y) — flz —y) = 6f W) < ¢(z.y),
for all z,y € X, then there exists a unique cubic mapping C' : G — X | which is defined by the limit

C(z) := lim 8%]“(2”3:),

n—r oo

for all x € G such that the relation

(3) 0@ - f@)]] < =B(x, ~2) + 2 B(0,2) + ~—(0,0)

18 48 147
holds for all x € G.
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In [2], as a particular case of Theorem 3, is obtained a stability theorem for the functional equation
(1) if the control function ¢ is given by ¢(z,y) := ||z||P + ||y||P, where 0 < p < 3.

In the present paper, another stability results in the sense of P. Gavruta [1] (modified Hyers-Ulam-
Rasiass stability) for the cubic functional equation (1) is studied. It is also proved, that functional
equation (1) remains stable if ¢(z,y) = ||z||? + ||y||?, for 3 < p, but it is not stable in the sense of
Hyers-Ulam-Rassias for p = 3. For the proof of this last result we use the next theorem which appears
in the A. Gilanyi’s paper [3].

Theorem 4. Let n be a positive integer, let € be a positive real number and let
€

2n(2n + nl)nn”
Consider the mapping ¢ : R - R

e* =

n"e* ifx>n
p(r) =< ez, if —n<z<n
(=D)™n"e*, ifx<n
and, for a fized integer | > 2, define a function f: R — R by

flx) = i goglm";w)’ for all x € R.
m=0

For this function we have
1Ay f (@) = n!f(y)l < (=" + |y["), for all z,y €R,

but there does not exist a real number ¢ = (n,a) for which there exists a monomial function g : R — R
of degree n such that

If(z) — g(2)|| < ce|z|, for all z € R.

The difference operator A, which appears in the above theorem, is defined for a mapping f from a
linear space X into Y and for a positive integer n, by

ALf(@) = f@+y) — f(2), for all 2,y € X,
and
AZHf(x) = A;f(x)AZf(x), for all z,y € X.

Definition 5. Let X and Y be two given vector spaces. A mapping f : X — Y is called amonomial
function of degree n if the functional equation

Ayf(@) —nlf(y) =0,

holds for all z,y € X.

Remark 6. If n =3, then A} f(z) = f(z + 3y) — 3f(z + 2y) + 3f(x + y) — f(x), and, therefor,
A f(x) = 3!f(y) = fx+3y) = 3f(x +2y) + 3f(x +y) — f(x) —6f(y), for all 2,y € X.

If in the last relation we replace x by z-y, we obtain that the notion of monomial function of degree
3 is equivalent to the notion of cubic functional equation in the sense of Definition 1.

2. THE MODIFIED HYERS-ULAM-RASSIAS STABILITY OF CUBIC FUNCTIONAL EQUATION (1)
The general Hyers-Ulam-Rassias stability of the cubic functional equation (1) is presented.
Let (G,+) be an Abelian group such that, for any = € G, there exists a unique a € G with the
x
property = 2a. The unique element a of G with this property is denoted by —.
We consider a Banach space (X, || - ||) and a mapping ¢ : G x G — [0, 0c) such that

@) ay) =) 2 (2% 2%) < o0,
n=0
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for all z,y € G. We can formulate our main result:
Theorem 7. Let f: G — X, be such that

(5) I[f(z+2y) +3f(z) = 3f(z+y) — f(z—y) —6fWIl < o(z,y).

forallz,y € G.
Then there exists a unique cubic mapping C : G — X, which is defined by the limit

R T 3n £
Cle) = Jim 21 (55).
for each x € G such that the relation
1 T T ) T
© lf@-c@i<ze(5-5)+32(0.3).
holds for all x € G.

(i) Proof of existence. In (5) we take x =y = 0. It follows that ||6f(0)|| < ¢(0,0). From (4) we have
that ¢(0,0) = 0, therefore it follows that f(0) = 0.
In relation (5) we replace x by § and y by —%, respectively, to obtain

() +(5) -0 -1 (-5)] 0 5-5)
hence
(2 e () -0 <0 (-,
for all x € G.

In (5) we put z = 0 and y = §, we obtain

s+ 35035 ()1 (-3) ~or G| 20 02).
hence
O s (5) 55 (3) -0 £50 (0.
for all z € G.

From (7), (8), taking into acount the triangle inequality it follows that

J-osceas (2)]| < (5. 2) #3003,

hence
O [er)-nal<de (50
for all z € G.
Denote
o= g (5:5) + 5 (05):

for each z € G.
We will prove, by mathematical induction on n, that
x x _ x
10) |2 (55) - F@|| < vl@) + 20 () + o+ 22070y (55)
By (9), it is obvious that (10) holds for n = 1.
Suppose that (10) holds for n € N. We prove that (10) is true for n + 1. Replacing = by § into (10)
and using the triangle inequality, it follows:

s (i) —stol] = oo () -2 (2] 5 (2) 00
< Y(z) + 2% (g) + o+ 227 (;—n) ;
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hence relation (10) holds for all n € N.
We claim that the sequence {2%" f(27"z)},>¢ is a Cauchy sequence. Indeed, for m > n > 0, using

relation (10), it follows
er ) -] - 2 ) ()]
< 2 [zb (50) +2% (gagr) #4220 V0 (2% | W—%ﬂ B

m—1

- B,

for all all z € G.
Taking the limit as n — co we obtain

Jm |l () -2 ()] =

Since X is a Banach space, it follows that the sequence {23" f(27"z)},>¢ converges. We define
C(z) := lim 2°"f (i) ,

for each = in G.
From (10) we obtain

I0G) = @)l < D2 (57) -
n=0
hence

a1 0@ - f@l < g2 (5. -5) + 28 (0.3).

for all z in G.
We claim that C' is a cubic mapping in G. Indeed, replacing z by 27"z and y by 2~ "y respectively,
in the cubic functional inequality (5) and multiplicating this relation by 237, it follows

12" f (27 "z +2-27"y) + 3-2°"f(27"2) —3-2°"f (27 "z +2 "y) —
2Nf (2" —27"y) —6-2°"f (27" || < 2°Mp(27 e, 27 "y),

for all z,y € G, and all n € N.
Taking the limit as n — oo, we obtain,

Clz+2y)+3C(x)-3C(z+y)—Cz—y)—6C(y)=0

for all z,y € G, therefor C is a cubic mapping.

(ii) Proof of uniqueness.

Let Cy:G — X be another cubic mappings satisfying the cubic functional equation (1), such that
inequality

1 T z 5 T
12) 6@ - f@ll < e (5.-3) +22(0.5).
holds for all 2 € G. From relation (2), it follows
. 93m i . 93m i
C(z):=2 C(gm) and Cy(z) := 2°™C, (2m),

for all x € X, and all m € N.
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Using the triangle inequality, the relations (6), (10) and (12), it follows
IC(z) = Cr(@)]| 12027 x) — 27" C1 (27 w)|| <

< 2PM|C@TMe) - f@TM)|| + 22| f(27 M) - CL27Ma)|| <
1 27"y 27"z ) 27"y
< 2-22°m. % - 2-2.25m. 9 (0,7—= | =
= %% ( 3 T2 ) 25 <O’ > )
3 ¥ 9(n+m+1)7  9(n+m+1) 2(n+m+1) -
00
= 3(n+m+1) ( r 7 ) +
— 2(n+m+1)’  9(nt+m+1)
n+m+1 T _
+ — (O’ 2(n+m+1)) N
_ L i 2 (L)1 2 S gy (0, 2)
24 2r’ 2P 24 ’9p )’
p=m+1 p=m+1

for all x € GG, and all m € N.
Therefore, from the above inequality, taking the limit as m — oo, we obtain

IC(z) — Ci(2)]| = 0,

for all z € G.
It follows that C' coincides with C;. This completes the proof of the theorem. [

Corollary 8. Let X be a normed linear space and let Y be a real complete normed linear space. Let
bee>0andpeR p>3. If f:X —Y isamapping such that the following inequality

1f (@ +2y) +3f(x) = 3f(x+y) — fl@ —y) = 6f W <e-([z[|” + [[y]|")
holds for all x,y € X, then there exists a unique cubic mapping C : X — Y | defined by the limit

C(z) := lim 23"f( )

n—oo
for all x € X, and for allm € N, such that
Te 1
1C(2) = f@)ll < & Mol 55—

for all x € X.

Proof. If in Theorem 7 we take ¢(z,y) = ¢ (||z]|? + ||y||P), p > 3 it results:

1 T 5 T € z||P T||P S5e Te ||z ||P
v =g (5-3) + e (03) =5 (5 + 1) + 5 5 |I3
Therefor, there exists a unique cubic mapping C, such that
1 T 5 T > T 76 — T ||P
— < _ —- _ _ ) = 3n )y = = 3n _
1C() = f@)I] < 6(1)(2’ 2)+6¢(0’2) 1;]2 1/’(271) 6 1;]2 gnt1
= d piQnm—m:EM.#:E.”pr.
— 6 2 1-—-237r
for all z in G. O

The next theorem shows that the cubic functional equation is not stable in the sense of Hyers-Ulam-
Rassias if p = 3.
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Theorem 9. Let € be a positive real number and consider the mapping ¢ : R - R

113 s ifx >3
o@) =% 2%, if —3<x<3
_ﬁv ZfﬂfS?)

For a fized integer | > 2, we define a function ff R — R by
(o] lm
fa@y =3 %, for all z € R,
m=0

For this function we have
(2 +2y) +3f(z) = 3f(z +y) — flz —y) = 6fW)l| <e (2]’ +[yf°), for all z,y € R,
but there does not exist a real number k for which there exists a cubic function C' : R — R such that

||f(z) — C(2)|| < ke|z|®, for allz € R.

Proof. Using Remark 1.6. it is obviously that this theorem is a particular case of Theorem 4 for
n=3. O

Acknowledgements: The author is indebted to Professor P. Gavruta for a useful discussion during
the preparation of this paper.
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Abstract. A special class of smooth functions, called strongly polyholomorphic
functions, is studied. This is a generalization of the holomorphic functions for the 3-
dimensional case or higher, introduced by a natural extension of the Cauchy-Riemann
conditions. This functions are conformal maps of the first kind, which is a nice geo-
metric property. It is shown that for R?, this functions form a 10-dimensional linear
space over the reals, with respect to the addition .
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Definition 1 ([1]). Let G be a nonempty open set in R*, n > 2, and f = (f1, fa,.-., fn) :G = R" a
differentiable function on G. The function f is said to be:

(a) weakly polyholomorphic on G if there exists a pair (fi, f;), i # j, such that the Cauchy-Riemann
conditions
ofi _ 01
(1) { gf,-l _ B%ij
Ox ox;
hold on G;
(b) polyholomorphic on G if there exists i, 1 < i < n, such that the relations (1) take place for
every j 1,1 <j<mn, onG;
(c) strongly polyholomorphic on G if the relations (1) are satisfied for every pair (fi, f;), i # 7,
1<i,57<n,ond.

Remark 2 ([1]). For n = 2, the class of weakly polyholomorphic, polyholomorphic and strongly poly-
holomorphic functions coincides with the class of holomorphic functions.

Example 3 ([1]). A linear function f : R* — R*, f(x) = Az is strongly polyholomorphic if and only
if A is antisymmetric and with equal elements on the main diagonal.

Example 4 ([1]). The function f : R* — R" given by
fx, 2o, xp) = (z% —as - —wi,?xlzg,...,Qzlzn)
is strongly polyholomorphic on R™.
The strongly polyholomorphic functions are smooth functions, as proved in [1].

Proposition 5 ([1]). If f : G — R™ is a strongly polyholomorphic function on G then f € C*(G).

The strongly polyholomorphic functions have a nice geometric property. Since the holomorphic
functions are conformal maps of the first kind (preserve the angle between any two smooth curves
which intersect, see [2, p. 40-42] for more details), in [3] it has been proved that the same property
holds for the strongly polyholomorphic functions in R?.

Unfortunately, the class of strongly polyholomorphic functions is not large. This is a consequence of
the fact that the conditions are very restrictive. This fact has been proved in [3], where the following
representation result is given for the class of strongly polyholomorphic functions in R?.
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Theorem 6 ([3]). Let G be a domain in R®. A function F = (f,g,h) : G — R® is strongly polyholo-
morphic on G iff

flz,y,2) =B (y* + 2°

9(@,y,2) = — /;(2611

0

h(m,y,z) = _/ (262

- '7’2) + P(y,z)x + Q(-Tf,y,z),

OP oQ
+ a—yw + a—y)dx + o(y, 2),

OP oQ
+ ga: + E)dm +¥(y, 2),

where P(y,z) and Q(z,y,z) are arbitrary polynomial functions with degP <1, deg@ < 1 and

oy, 2) = % (y* = 2%)

1
2

where 3,q, k1, ks € R.

oP
En + <P(0,2)+ . —26960) y—qz+k

oQ
Ox

Yy, 2) = = (2> —9?) % + (P(y,O) + % - 2ﬂxo> z+qy + ko

This result gives a full representation of the strongly polyholomorphic functions in the three-
dimensional case, but the formulas involved are not so neat and hardly accept an obvious generalization
for the n—dimensional case.

We shall prove a more clean representation for the strongly polyholomorphic functions in the three-
dimensional case, which can be easily extended to higher dimensions.

First of all, let us remark that the class of strongly polyholomorphic functions on a nonempty open
set G is a real linear space with respect to the addition, denoted by (SPH"(G),R,+) or, shortly,

SPH".

The main result follows.

Theorem 7. If G is a domain in R?, then SPH? is a ten—dimensional linear space, where a basis BB
consists of the following linearly independent function:

and

(z,,2) = (&% —y” -

(x,y,z) — (2my,y2 -

2%, 2xy, 2yz)

2% — 12, 2yz)

(z,y,2) — (23@2, 2z, 2% —z? — y2)

(@,9,2) = (2,9, 2)

(2,y,2) = (0,2, —y)
(z,y,2) = (—2,0,x)
(2,y,2) = (y, —=,0)

(x5y7z) _> (15070)
(z,y,2) — (0,1,0)
(z,y,2) — (0,0,1).

Proof. Let F = (f,g,h) : G — R3 be a strongly polyholomorphic function on the domain G and
depending on the variables z, y and z. Recall that F' is smooth on G and satisfies the following
relations on G

(2)

of _9g _0h
oxr Oy 0z’

of _ 09 99 __0n oh __0f

oy 9z’ 8z Oy Oz

T 9z



Starting with these, we obtain the following: %28% = a% (%5) = —% (g%) = —% (%g) =
o (on) _ & (8hy _ _ 8 (or) _ _ &f - ;
Ba (a_y) =35 (%) =—3 (5) = — 5,02 implying that
0 f
3 —
(32) 0yoz
By symmetry, the following relations:
0%g
3b =
(3b) 00z
o*h
0xdy

3
take place too. Again using (2) we obtain that % = a%y (%) = %zy (&) = 2 (%) and,

by (3b), the result will be
*f

4 =0.
(4a) 0z2dy
By symmetry we also get
O3 f
4b — =
(4D) 0x%0z 0
For g and h, the above relations become
&g &g
4 ——=——=0
U0 Gy2as = ay2ez = O
?n _ ®h
0220 0220
. . 3 2 2 2 2
Again, using (2) we have that 31 = 2 (%) = 2 (Z—Z) = %{ay (g—g) = _%By (g—i) =
8% (af) _ 8> (8 .
el (3—3;) =37 (B_Z)’ that is
of_ _ %
ox3  Oy3
and the symmetrical relations
&g _ _0%h
oy3 023’
o°h__9f
0z3  0x3’

which can take place only if
o? o? 0h

5y LL_09_Oh_,
or3  0yd  0z°

Consequently from (4a), (4b) and

)

(5
0 (@0 _ 0 (B5Y_ 0 (1) _,
oz <3m2> Oy <3a¢2> T 0z <8$2> -

we have that

AN
v(22) =0
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on G, hence the function % is constant on (G, and, symmetrically, so will be 227"2’. Thus in R® (‘327'2’,
there exists a = (a1, as, az) such that
(6) 0 f 0%g 0%h
— =1, —5 =02, =5 =@
0x? Va2 T 922 ’
on G.
M f (2) and (6) btain that 2 (2L) = 2 (22) = 229 — d. b "
oreover, from an we obtain that 5 (57 ) = 3, (55 ) = 5;# = a2 and, by symmetry, we

have 8% (%) = a3. Together with 2 (ﬂ) = a; we conclude that

oz \ Oz
of\ _
V(%) -

on GG. This takes place iff %—(a1x+a2y+a32) is constant on G, since V (% — (a1 + axy + agz)) =0.
Thus there is a real constant by such that

0
(7a) % =a1x + asy + azz + by

on G. Using (2), the same equality holds for gz and g—’;.
Let us also find g—g and %. We have the followings

(%) = a% (%) = 8% (g—Z) = 2272 = as, using (2) and (6);
(%) - _3% (g_i) =-2 (2—2) =-Z (%) = —ay, using (2) and (6);

2 .
(%) = 3‘9ng = 0, using (3a).
We conclude that

\Y <g_£> = (a2, —a1,0)

on G and, symmetrically,

\Y <%) = ((13,0,—(11)-

Thus there exist two real constants by and by such that

o S o

0
(7b) —f = asx — a1y + by

Ay
and
(7c) 8— —as3r — a1z + by
0z
on G. Symmetric formulas take place for g and h. By direct use of (2) we obtain
(8a) g—i = —asx + a1y — by
and
oh

(Sb) 8_:13 = —az+ a1z — bs.

Again by symmetry, we have
9g
Vi=— )= Oa s T 3
<3z> (0, a3, —a>)
therefore there is a real constant b3 such that

0
(8¢) 8_2 =azy — asz + b3
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on G; using (2), we also obtain

oh
(8d) 3 = —asy + a2z — bs.
Let us come back to (7a), (7b), (7c) and finally compute f. It easy to check that the function
f:G — R defined by

a
flz,y,2) = — (2% —y* — 2%) + aszy + azzz

2
satisfies

— = a1T + a2y + asz,
ox

af

8_y = ax — a1y,

57

& = asr —aiz,

consequently V (f — 7) = (bo, b1, bs), which can take place iff f — f — (box + b1y + bo2) is constant on
G. Tt means that there exists a real constant ¢; such that on G, f has the form

a
(9a)  f(z,y,2) = 71 (2% —y® — 2%) + asxy + azwz + boz + bry + baz + ;.

By using the same arguments as above, we can obtain the expressions for g

(9b)  g(z,y,2) = %( 2 2? — 2 4 arxy + asyz — bix + boy + bsz + ¢
and h
(9c)  h(x,y,2) = %(22 — 2% —y?) + a2yz + a122 — by — by + boz + c3,

where ¢ and ¢3 are real constants.
Finally, the expression of F' reads

(10) F(X) :alPl(X)—I-ang(X)+a3P3(X)+BX+C’,

where
bO bl b2 C1 T
B = —b1 b() b3 s C= c2 |, X = Yy
—b2 —b3 b(] C3 z
and
W YT zx
P (X) = Ty , Po(X) = W , P3(X) = , Y
Tz Yz %

Now it is obvious that F' depends linearly on the 10 linearly independent functions of B, which concludes
the proof. O

Following the ideas from the previous proof, it can be easily shown the more general result

Theorem 8. If G is a domain in R™, then SPH" is a w—dimensional linear space and the
general form of the functions in SPH™ is

flx) = (a,w)m—%(m,m)a+Bm+c,

where a, ¢ € R™ and B is a n X n sqew-symmetric matriz with the elements of the main diagonal equal.
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The volume function variation of one chamber of Panu-Stanescu rotary
engine
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Abstract. The paper presents the parameters equation of the inside surface section
of the crankase of the piston section and the determination of the volum function
variation of one chamber.

1. THE GEOMETRY OF THE INNER SURFACE OF THE CARCASS

The Panu-Stanescu rotary engine is a heat rotary piston engine, Romanian letters-patent of engineers
Mihai Panu and Gheorghe Stdnescu. The engine consists on cylindrical carcass(1) with two different
values and antipodal ovalizations. The rotary piston (2) is mounted inside the carcass and includes six
box-fire(3) for each chamber. On the external surface of the piston there are six radial channel disposed
at sixty degree, in which six obturation bars(4) glides. During the running, the bars are in permanent
contact with the surface of carcass due to centrifugal forces.

Let we denote by (p1,¢) the polar coordinates of the point M from external extremity of the bar
P; when this passes through the first ovalization and we denote by (p2, ) the polar coordinates of the
point M when the bar passes through the second ovalization.

From the triangles AOO, P; and AOO; M we get the relations:

R = R® + €] — Rer; pi —2ersinpp — (Rf —€7) = 0.

The equation yields the polar line of the first ovalization :

(1) p1(p) =ersingp + \/R2 — Rey +€2sin’ p

Also, from the triangles AOOy Py and AOO;M we get analogously the polar line of the second
ovalization

(2) p2(p) = —easinp + \/R2 — Rey + €3sin” ¢

2. THE VOLUME FUNCTION VARIATION

Between carcass, piston and the bars are formed six chambers with variable volum. When the bar P,
passes through the first ovalization, inside the chamber P; — Py take place the admission-compression
processes and when the bar passes through the second ovalization take place the expansion- evacuation
processes.

The volum of a chamber formed between the piston and carcass has a cyclical variation according
to ¢ angle by the formula

(3) V(QO) = lPA(QO) + Vca

where: I, -the breadth of the piston, A(y) -the plan area of one chamber, V., -the volum of the
combustion chamber.
The ¢ position of the piston determines the following expressions of the A(y) area:

a) for ¢ € [0, %], we obtain

Aitg) = [[ dzy = [[arag = 5 7 (p3g) — B?) dg
D D z

e+
bforge |55, @) =% | (s -F)dy

(SIE

w3y

—_
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%]
9 forge Mo, @) =% | (B -R)de
G

The volum function variation V(¢) depend continously on ¢ and it has the branches Vi(¢) =
lyAi(9) + Vea, i = 1,7 with angle ¢ in the adequate intervals. The maximal volum at admission-
compression is obtained for ¢ = 7/3 and the maximal volum at expansion-evacuation is obtained for
p = 4m/3.

We denote by € = Viya0/Vinin the ratio of compression and we denote by 6 = Vymaz/Vinin the ratio
of expansion, where V4, is obtained by the formula

4
(4) Vdmaw = lpAS <?ﬂ-> + I/ca

The volum of combustion chamber V., = Vi, is calculated by the relation
1 7T
© V= b (5)

By means of (4) and (5) we get

4
(6) 5:1+(5—1)7A5(3)

%2 (5)
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FIGURE 2. Variation of V(¢) at one chamber.

At a single rotation of the piston take place six working cycle.

Figure 2 shows the variation of the volum of an rotary engine with following specific parameters:
the ratio of compression € = 8,5, the values of ovalizations e; = 9,25 mm, es = 14,72 mm, the radius
of the piston R = 130 mm, the breadth of the piston [, = 125 mm.
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Abstract. In [2] a method for solving a large sparse nonlinear systems is presented.
The method uses threads in a Win32 environment. This paper presents the same
method using also threads in Linux and compares both method for speedup and
efficiency.

Keywords: Parallel algorithms, iterative methods, sparse nonlinear system

1. INTRODUCTION

Solving large nonlinear systems of equations is a hard task. Because most large systems are sparse,
one can think to take advantage of the sparsity by solving the system in parallel.

Many methods have been proposed to solve such a system in parallel; most of them do not decompose
the original system into subsystems and use either a particular form of the system, or decompose and
solve an equivalent system. An overview of these methods have been given by Dragan in [3]. Also, in
[3] Dragan proposes an algorithm for decomposing a sparse nonlinear system into subsystems. In [2]
Dragan proposes an algorithm for parallel solving of such a system using threads.

2. THE PROBLEM

The problem of solving a sparse nonlinear system of equations in parallel can be formulated as
follows:
Given the sparse large nonlinear system

F(z)=0,
where F : D C R® — R, solve it in parallel by decomposing the system into subsystems.
The algorithm in [2] uses threads in Win32. Threads can be used in many operating systems. The
paper compares threads’ usage in Linux and Win32!, using the same numerical method, Newton SOR,

in order to illustrate threads behavior. Because of different tasks scheduling, the same program with
threads gives different results on Linux and Win32.

3. EXPERIMENTAL RESULTS

Let us consider the system

2.’E1.’E2 — 2cos ((El — 1) — 10 =0
sin (.’El + .’E3) + 302_2 + sin (.’El + (EQ) =0
zqtan (z3 + z4) + 12 =0
2x4 — 523 + 2 =0
2 (x5 — ) —2cos(x7) —sin(zg — 1) =0
& sin (x5 — x6) + sin (zg —sin (z7)) =2 =0
x7 —tan (xg) + x5 — g + 5 =0
tan (z1x5) + x¢ sin (x5 + xg) + 2 =0

If we apply the decomposing algorithm ([3]), the system can be decomposed into three subsystems:
{1,2,3,4}, {4,5} and {5,6,7,8}.
In the tables below we use the following notations:

1By Win32 we understand one of the following operating systems: Windows NT, Windows 2000 or Windows XP.
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e 20 - initial iteration;

e w - relaxation factor;

e ¢ - approximation error.

For tests we used:

e an Intel P ITI/850MHz/512MB RAM to run RedHat Linux 7.2;
e an Intel P IV/3.06GHz/1GB RAM with hyper threading technology to run Windows XP.

Depending on the initial iteration, we consider three cases. For each case we have two tables:

e First table contains number of iterations;
e Second table contains time in milliseconds.

The none notation in the tables means that the solution could not be found in 20, 000 iterations.

3.1. 2° = {1,2,3,4,5,6,7,8).

w Win32 Linux
e=10"° £€=10"% £=10"° =108

0.4 372 612 236 395
0.5 175 274 105 203
0.6 120 168 93 207
0.7 191 165 100 135
0.8 none none none none
0.9 60 73 319 357
1.0 177 294 152 269
1.1 393 442 none 563
w Win32 Linux

e=10"°% £=10"8% £=10"° £=10"8
04 13.874 23.010 12.204 20.425
0.5 6.616 10.320 5.466 10.525
0.6 4.592 6.375 4.820 10.722
0.7 7.578 6.209 5.191 6.997
0.8 none none none none
0.9 2.313 2.790 16.523 23.527
1.0 6.617 11.630 7.892 13.916
1.1 14.572 16.475 none 26.293

In this case one can see that for w < 0.7 in Linux we need less iterations, with one exception, for
w = 0.6 and ¢ = 1078, when the number of iterations in Linux is greater than in Win32.

Another interesting situation is, for example, for w = 0.6 and ¢ = 10~°, when the number of iterations
in Win32 is greater than in Linux, but the execution time is shorter. The same situation is for w = 1.0
and for w = 0.7 and € = 1078,

One can also see that for w = 1.1 and € = 107> the program cannot be solved in Linux.

3.2. 2% = {4,4,4,4,4,4,4,4).
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w Win32 Linux
e=10"°% £=10"% £=10"° £=10"8

0.4 394 612 211 425
0.5 174 274 123 210
0.6 109 168 65 223
0.7 96 163 100 125
0.8 none none none none
0.9 53 70 46 68
1.0 1306 none 3345 1056
1.1 156 185 635 678

w Win32 Linux

e=10"° £€=10"% £=10"° =108

04 14.695 23.504 8.806 21.974
0.5 6.569 10.371 6.390 10.878
0.6 4.158 6.131 3.407 11.550
0.7 3.651 16.090 8.513 10.674
0.8 none none none none
0.9 2.054 2.677 2.428 3.550
1.0 103.455 none 176.655 54.611
1.1 3.795 8.047 32.722 34.965

In this case one can easy see some interesting things. For example, for w = 0.7 and € = 10~° the
Win32 program has only 4 iterations less than the Linux program, but is 2.331 times faster. For w = 1.0
the Win32 program cannot solve the system for ¢ = 10~® and the Linux program is 3.23 times faster
than for ¢ = 107°.

3.3. 2° = {8,7,6,5,4,3,2, 1}

w Win32 Linux
e=10"°% £=10"8% £=10"° £=10"8
04 366 601 183 401
0.5 161 257 116 218
0.6 108 158 60 135
0.7 318 290 60 88
0.8 none none none none
0.9 144 109 144 109
1.0 2080 546 879 2326
1.1 174 none 17815 482
w Win32 Linux
e=10"°% £=10"8% £=10"° £=10"8
04 13.872 22.987 9.496 20.722
0.5 6.142 9.686 6.028 11.290
0.6 4.115 5.938 3.810 7.013
0.7 12.103 10.981 3.147 4.579
0.8 none none none none
0.9 5.502 4.177 5.282 6.014
1.0 78.319 20.534 45.444 120.182
1.1 6.578 none 1699.026  24.865
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In the last case we have some other interesting things. For example, for w = 0.9 we have the same
number of iterations in Win32 and Linux. While the Win32 program is faster for ¢ = 107, the situation
is changed for ¢ = 1078.

CONCLUSIONS

One can easy see some differences between the results above and the results obtained in [2]. The
differences appear because of hyper threading technology and different task scheduling in Win32. Also
for similar number of iterations, the processor speed is very important, even for more iterations.

Under Linux, the system can be solved faster than in Win32 for w < 0.7. When the system cannot
be solved in Win32, it can be solved in Linux, and, even more, in that case, solving the system in Linux
is faster for £ = 10~® than for e = 1075,
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Evolutionary multimodal optimization

D. Dumitrescu, Rodica I. Lung

Abstract. A new evolutionary model for multimodal optimization called the Roam-
ing Genetic Algorithm is proposed. The problem of finding multiple optima is solved
using a multi-population model. An external population (an archive) is used to store
the optima already found. A stability measure for a sub-population is introduced.
Stability is defined using the number of offspring that are better then the best indi-
vidual in the parent sub-population. Each sub-population evolves in isolation until
it becomes unstable. Members of unstable sub-populations are spread over different
regions of the search space. This feature is important for maintaining the popula-
tion diversity. Experimental results prove that the proposed algorithm is able to find
multiple solutions even for test functions considered to be deceptive.

1. INTRODUCTION

Over the years, genetic algorithms (GA) have proven effective in solving a variety of search and
optimization problems. Determining the global optima within a fitness landscape has been the subject
of much research. The intrinsic parallelism in a GA suggests, however, that this method should be able
to locate several optima of a multimodal function. The problem of locating multiple solutions raises in
many real world applications where the knowledge of several different potential solutions provides the
decision maker with a better insight into the nature of the design space and perhaps suggest alternative
solutions.

Most evolutionary multimodal optimization models are using one way or the other Fitness sharing
(Goldberg, Richardson, 1987) as the main mechanism for detecting multiple optima. Other approaches
are using parallel subpopulations evolving in isolation or in comunication with each other in order to
locate the optima. Some of the most popular parallel models are the island models (Gordon et. Al
1992).

The algorithm presented here uses parallel subpopulations evolving in isolation. The subpopulations
are 'roaming’ in the search space looking for an optimum. At each generation they are verifying whether
the next generation will bring them a solution better than the best they already have. If not, they
believe that an optimum has been found and will roam in other regions of the search space in order to
find other solutions.

2. THE ROAMING GENETIC ALGORITHM (RGA)

In this section we propose an evolutionary model that identifies the local optima solutions and stores
them in a separate population (an archive). The algorithm maintains several subpopulations evolving
isolated. The number of subpopulations is a parameter of the algorithm and it is not related to the
number of local optima searched. This conffers robustness to the search mechanism. Once a local
optimum is detected it is stored in the archive.

Let N be the number of subpopulations. At each generation ¢ the population P(t) consists of N
subpopulations P;(t),i=1,..., N.

We may define an order relation on P(t). Consider a maximization problem. We say that the
individual z is better than y and we write

r=y <= eval(z)> eval(y).

Let x} be the best individual in the subpopulation P;(¢). By evolving subpopulation P;(t) a new
subpopulation P; (t) having the same size as P;(t) is obtained. We define the B operator as the number
of offspring in P, (t) that are better than z?:

(1) B:P(t) —P(P(t) B(a})={zeP(t)|z>az}
A stability measure SM;(t) is associated to each subpopulation P;(t).
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Definition 1. The stability measure SM;(t) of the subpopulation P;(t) is defined
card B(x})
cardP;(t) ’

where z} is the best individual in P;(t) and card A represents cardinality of the set A.

SM;(t) =

Observation 1. The stability measure of a subpopulation has several properties that can be deduced
from its definition:

(i) 0 < SM;(1) < 1;

(it) if SM;(t) = 0 then x¥ is a potential local optimum;

(iii) SM;(t) = 1 if all the offsprings in P, (t) are better than x* which means that P;(t) is not near
convergence;

(iv) the operator IM;(t) defined for each P;(t) as IM;(t) = 1 — SM;(t) will be called the instability
measure.

A subpopulation having a stability measure closer to 1 is considered to be stable. A stable subpop-
ulation evolves in isolation until detects a local optimum. A subpopulation closer to convergence has
a stability measure closer to 0 and it is considered to be unstable. A low stablity measure can also
indicate that the subpopulation has stucked in a false optimum.

2.1. Adding a solution to the archive. An external population called the archive is used to store
the potential optima.

If a subpopulation P;(t), i = 1,..., N has SM;(¢) = 0 it means that after one iteration no offspring
better than z} was produced and we consider ] as a potential local optimum.

A potential optimum can be a local optimum or can be very close to a local optimum.

Before adding a solution z* to the archive the distance between z* and every solution in the archive
is compared with an archive parameter §. If this distance is lower than J, then only the best fitted
between z* and x is saved in the archive. 4 is a parameter of the algorithm. Experimental results show
that § depends on the fitness landscape, i.e. the best results are obtained when the value of d is chosen
considering the distance between the local optima of the function.

In conclusion, a solution z* can be added to the archive only in two situations: either the distance

to other solutions in the archive is bigger than §, meaning that z* represents a new optimum for the
archive, or it is better than other solutions in the archive that are within a distance smaller than ¢ to
xT*.
2.2. Subpopulation migration. The stable subpopulations are the subpopulations that have con-
verged or that are near convergence. After adding the potential optima z}, i € {1,..., N} to the
archive, the search performed by the subpopulation P; has to be redirected to other regions of the
space. Thus, the stable subpopulations will be spread in the search space in order to locate new optima
solutions.

In order to prevent convergence to false optima points all the subpopulation are going through a
selection process that will choose the ones that have to be redirected. This selection is performed
using the instability measure of the subpopulations as an evaluation function. Any type of selection
operator (proportional selection, tournament selection etc.) can be used in order to select the unstable
subpopulations.

An example of selection operator for subpopulation is presented here. For each subpopulation P;(t)
a random number ¢ € [0, 1] is generated. Then if ¢ is smaller than IM; (the unstable subpopulations
have better chances to be selected) the subpopulation P;(t) is selected into a subpopulation migrating
pool (SM P).

The subpopulations selected in the (SMP) will be spread in the search space in order to detect
other optima. We can say that the subpopulations are migrating to different regions. This migration
is realized using genetic operators defined for subpopulations. For example, a mutation operator for
subpopulations will apply mutation to each individual of the subpopulation. To ensure complete change
of the individuals of the subpopulations, the mutation rate here will be closer to 1.
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The following generation P(t 4+ 1) will be consist of the subpopulations that were changed in SMP
and the offspring P, (¢) of those subpopulations P;(t) that were not selected in the SMP.

The algorithm stops after a given number of generations. At the end the archive will contain the
local optima solutions.

Input: N - subpopulations number
Popsize - subpopulations size
Nrgen - maximum number of generations
0 - archive parameter
Pe, Pm -Crossover probability and mutation rate
Output: Archive - the set containing the local optima
Step 1: Initialization a) t := 0;
b) Initialize P;(0) for each i = 1,... N by generating popsize
number of individuals;
¢) Archive = {);
Step 2: Evaluate each individual z in each subpopulation P;(t) by
2.3. The Algorithm. caculating its fitness value F'(z);
Step 3: Evolve each subpopulation P;(t) one generation by applying
selection, recombination (with the crossover probability p.)
and mutation (with the mutation rate p,,). Let P; () be the
resulting offspring subpopulation.
Step 4: Evaluate each individual z in the offspring subpopulation PZ-I (t)
by caculating its fitness value F'(x);
Step 5: For each subpopulation P;(t) calculate:
a) The best individual z7;
b) The stability measure SM;(t) using Definition 1;
Step 6: For each subpopulation P;(t) having SM;(t)=0 try to add z} to
the Archive.
Step 7: Foreachi=1,...N do
a) generate a real number ¢ € [0, 1];
b) if ¢ < IM;(t) then add P;(t) to SMP;
Step 8: Migrate the subpopulaitons that are in SM P using mutation;
Step 9: Set P(t+1)=SMPU{P!(t) | P;(t) ¢ SMP}; t=t+1.
If t < Nrgen then go to step 2, else stop.

3. EXPERIMENTAL RESULTS

The Roaming Genetic Algorithm has been tested on several standard test functions. In this paper
we present the results from tests performed on function F'1 as defined by Goldberg (1989). Function
F1 has five peaks of decreasing height in the range 0 < x < 1 and it is defined by:

Fl(z) = e~ 2 (555§)° sin®(57z)

The exact positions and values of the maxima as given in [1] are shown in Tablel. The results presented

Peak T Fitness
1 0.1 1
2 0.29942 0.917236
3 0.49883 0.707822
4 0.69825 0.459546
5 0.89767 .0251013

TABLE 1. F1 peaks
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F1GURE 1. Decreasing maxima function F1.
here were obtained using the parameters shown in Table 2.
Subpopulation number 30
Subpopulation size 10
Generation number 150
Parameter ¢ 0.1
Search precision 6
TABLE 2. Parameters used for the F'1 function.
function
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0.4
027 P
|:| ] I ] I ] I ] I ] -..-'I
a 02 0.4 0.6 0.4 1

F1GURE 2. The Archive after 10 generations.

The algorithm detects the peaks of the function at an early stage as we can see in fig. 2. After
10 generations the algorithm has already detected the peaks, but the solutions found are only close to
the optima. The number of generations needed to refine these solutions depends on the robustness of
the genetic operators used in Step 2. For this example we used binary tournament selection, a 2-point
crossover operator with the crossover probability 0.5 and strong mutation with the mutation rate 0.05.

The number of generations needed to refine the solutions depends also on the number of subpopu-
lation used. The reason is obvious: more populations have more chances to locate the optima.

In Table 3 the solutions averaged over 10 RGA runs are presented.
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F1GURE 3. The Archive after 150 generations

Peak T Fitness
1 0.100000 1.000000
0.299350 0.917223
0.498810 0.707820
0.698570 0.459510
0.897740 0.251010

T W N

TABLE 3. Numerical results after 150 generations.

4. CONCLUSIONS

A new evolutionary model for multimodal optimization called the Roaming Genetic Algorithm
(RGA) is presented. RGA uses a number of roaming subpopulations in order to detect multiple optima.
A measure for the stability of a sub-population is introduced in order to asses wether a subpopulation
has located an optimum or not. The subpopulations evolve in isolation until they detect an optimum.
The optima detected are saved into an archive and the corresponding subpopulations are spread to
other regions of the search space. An example is presented to prove the efficiency of the algorithm. The
RGA is capable to locate the peaks of the function but it needs improvments as far as the accuracy
of the solutions is concerned. A solution for this problem might be the use of local search in order to
improve the individuals in the archive.
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Keywords: MV-algebras, Product MV-algebras, Many Valued Logics
2000 Mathematics Subject Classification: 06D50, 06F35,03B52, 03B50

1. INTRODUCTION

MV-algebras were introduced by Chang in 1958 (see [1]) and since then this structure has captured
the interest of many mathematicians. An equivalent definition of MV-algebras is given by Mundici in
([2]), as follows:

Definition 1. An MV-algebra is an algebra (M, ®,—,0y) with a binary operation &, a unary operation
= and a constant Oy satisfying the following equations:

()zd(ydz)=(zdy) ® z;

(i) By =y & x;

(iii) x ® Op = x;

(iv) ——x = z;

(v) £ ® —0p = —0p;

(i) " (~zdy)Py=-(-ydz) Dz

Remark 2. The constant 1y, and the operations © and & are defined on each MV-algebra M as it
follows:

(’l) 1y = =04
(i) @y =~ ("2 ®y);
(iii) oy =2 O —y.

On this structure there is defined a partial order relation as follows:

Definition 3. Let M be an MV-algebra and x,y € M. We say that x < y if and only if x and y satisfy
one of the bellow equivalent conditions:

(’l) —Thy= lM;

(i1)  © =y = Opr;

(iii) y=a& (yox);

(iv) there is an element z € M such that © ® z = y.

Mundici ([5]) proved that there exists a categorial equivalence between the category of MV-algebras
and unital (abelian) l-groups. It means that any MV-algebra is obtained from an l-group G with strong
unit.

In what follows we will describe the way of obtaining an MV-algebra from an I-group G with strong
unit.
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Let (G,+,0,<) be an abelian l-group. We say that u € G is a strong unit of G if for any v € G
there is an integer n > 1 such that —nu < v < nu.

Let us consider now the following operations:

(i) @ : [0,u] x [0,u] — [0,u] where for any z,y € [0,u] we have z &y = (z + y) A u;

(ii) = : [0,u] — [0, u] where for any = € [0, u] we have ~z = u — x;

then the structure ([0, u], ®,—,0) is an MV-algebra.

Di Nola and Dvurecenskij ([7]) introduced Product MV-algebras by enriching MV-algebras with a
new internal binary operation called product.

Definition 4. A Product MV-algebra (shortly PMV) is an algebraic structure (M, ®,-,—,0x) fulfilling
the following axioms:

(i) (M,®,—,0p) is an MV-algebra;

(i) a-(b-c)=(a-b)-c;

(iii) if a + b is defined in M, thena-c+b-c and c-a+ c-b exists and

(a+b)-c=a-c+b-c

c-(a+b)=c-a+c-b,
for any a,b,c € M.

It is important to notice that the binary operation + used to define the product MV-algebras is the
binary operation from the l-group G that generates the MV-algebra (M, ®,—,0.) .

Also they have proved that there exists a categorial equivalence betveen the category of associative
l-rings with a strong unit « such that u - 4 < u and the category of Product MV-algebras.

In the same time that Di Nola and Dvurecenskij introduced product MV-algebras, Dumitrescu ([3],
[4]) introduced Double Product MV-algebras also by enriching the MV-algebra with a binary internal
operation - called product. The name was chosen Double Product MV-algebras because the operation
@ induces in an MV-algebra the product ®, meaning that the new product is the second one.

The definition of this new structure is very similar to the definition of Product MV-algebras, but as
we will see later it is not equivalent.

Definition 5. A Double Product MV-algebra (shortly DMV) is an algebraic structure (M,®,-,—,0n)
fulfilling the following azioms:

(i) (M,®,—,0n) is an MV-algebra;

(ii) (M,-) is a semigroup;

(i1i) if a ©b=0p thenc-(a®b)=c-a®c-band (a®b)-c=a-c®b-c for any a,b,c € M.

As we can see the new product - is considered to be distributive according to the operation @
defined in the MV-algebra M not according to the operation + defined in the l-group that generates
the MV-algebra M.

Remark 6. In what follows we will denote the class of PMV by Cpyy and the class of DMV by
Comv.

2. PMV VvERsus DMV

Since the definitions of PMV and DMV look very similar, we intend to determine that these structures
are not equivalent. We also will determine which one is more general and will give an example that
will sustain our result.

The PMV and the DMV have the same structure, which is (M, @®,-,—,0,7) but the axioms are not
all the same.

Both these structures start from the MV-algebra M = (M, ®,—,0x) -

In the definition of PMV the second axiom is equivalent with the fact that (3, -) is a subgroup which
is the second axiom in the definition of DMV.

It follows that if these two structures are not equivalent it is because of the axioms regarding the
distributivity of the product -.
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Let us compare now the two axioms. In the axiom (iii) of the definition of PMV we have the following
condition:

if a + b is defined

which is equivalent to
a+b<1y.

This relation is also equivalent with

(1) a<lpy —b=-b.

(From (ii) definition (11) and relation (12) we obtain:
a®b=0y

which is the condition of axiom (iii) from definition of DMV.

It means that the two conditions are equivalent and if the two structures are not equivalent it is only
because of the definitions of distributivity.

We have now only to compare the distributivity conditions that appear in the both definitions of
the new structures PMV and DMV.

In the definition of PMV we have the distributivity introduced by using the binary operation + from
the l-group that generates the MV-algebra M as it follows:

(2) (a+bd)-c=a-c+b-c.

Since a+b and a-c+ b ¢ exist (see (iii) Definition (3)) it means that a+b < 1y and a-c+b-c < 1.
It follows that

(3) a®b=(a+b)Alyy=a+b

and

(4) a-c®b-c=(a-c+b-c)ANlpyy=a-c+b-c.

From equations (2), (3) and (4) we obtain
(a®b)-c=a-chb-c

which is the definition of distributivity from the definition of DMV (see (iii) Definition (4)).
In a similar way we will obtain that if

c-(a+b)=c-a+c-b
in the conditions of definition (3) it follows that
c-(adb)=c-adc-b.
The above results lead us to the folowing theorem:
Theorem 7. Any Product MV-algebra is an Double Product MV-algebra.
Proof. The proof of this theorem is sustained by the results obtained above. O
Remark 8. The above theorem means that if P € Cpyyv = P € Cpuv.

In what follows we will check if the reverse of theorem (7) also holds true. To reach a conclusion in
what concerns us, we will start from the definition of distributivity from definition (4):

(5) (a®b)-c=a-cdb-c.

Since a ® b = 0j (see (iii) definition (4)) it follows that
(6) a®b=(a+b)Alyy=a+b.

JFrom equations (5) and (6) we have

(a+b)-c=a-cdb-c=(a-c+b-c)ANly.
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It follows that if a- ¢+ b- ¢ < 17 we have
(7 (a+b)-c=a-c+b-c

which is the definition of distributivity from definition (3), but it also follows that if a-c+b-c¢ > 1y
the equation (7) is not true.

Since we can not know that always a-c+ b-c < 17, the above results lead us to the following
theorem:

Theorem 9. Not any Double Product MV-algebra is an Product MV-algebra.
Remark 10. The above theorem means that even if D € Cppyy , there are situations when D & Cpry .
The theorems (7) and (9) lead us to the main result of this paper:

Theorem 11. The class of Product MV-algebras is strictly included in the class of Double Product
MV-algebras.

Proof. From remark (8) we have that

(8) Cpmv € Cpumv.

From remark (10) we also have that

(9) Cpmv € Cpuv.

From relations (8) and (9) we have that
Cpmv C Cpuv

that completes the proof. O

Remark 12. Since Cpyy C Cpuy it follows that Double Product MV-algebras is a more general
structure than Product MV-algebras.

In the next section we will present an example that proves that the inclusion in theorem (11) is
strict.
3. AN EXAMPLE OF STRUCTURE THAT IS AN DMV AND IS NOT AN PMV

In ([6]) it was proved that the structure ([0,2¢ — 1], @, —,0) is an MV-algebra with the operations
defined as follows:

a®b=(a+b)A (2" —1)

and
—a=2"-1-a.

Let t = 2. It follows that ([0, 3],®,—,0) is an MV-algebra with the operations defined as follows:

a®b=(a+b)A3

and
—a=3-—a.

Let us now consider the binary multiplicative operation e : [0, 3] x [0,3] — [0, 3] defined as follows:
aeb=(a-b)A3,

where the binary operation - is the usual product of real numbers.
It is easy to prove that ([0, 3], e) is a subgroup and that the structure ([0, 3], ®, e, —,0) is a Double
Product MV-algebra.
Let z = 1.4, y = 1.4 and z = 1.2 be three numbers from [0, 3] interval. It is obvious that z + y < 3.
Let us assume that ([0, 3], @, e, —,0) is a Product MV-algebra. Since  + y < 3 it follows that

(10) (z+y)ez=zez+yecz.
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But

(z4+y) ez (144+14)e1.2
= 28e1.2
3.36 A3

3

and
zez+yez = l4e124+14e12
1.68 A3 +1.68A3
1.68 4+ 1.68
= 3.36.

Since 3.36 ¢ [0, 3] it follows that z e z + y e z is not defined in [0, 3] and it follows that equation (10)
does not hold for these values of z, y and z. It means that the assumptiom that ([0, 3],®,e,—,0) is a
Product MV-algebra is not correct.

It follows that even if the structure ([0, 3],®,e,—,0) is a Double product MV-algebra, it is not a

Product MV-algebra.
This example shows that the inclusion in the theorem (11) is strict.
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Abstract. Radial Basis Function (RBF) is a very popular neural network model.
RBF networks are used in many domains, especially for solving interpolation prob-
lems. Complexity of RBF networks depends on the number of the processor units in
the hidden layer. This number can be reduced by using some techniques for cluster-
ing training data. The most popular clustering method for solving this problem is
the K-Means algorithm. K-Means is a static method. It requires prior specification
of the number of clusters. A new dynamic evolutionary technique, called Genetic
Chromodynamics (GC), is used for detecting the optimal cluster number and the
corresponding classes. Some experiments using GC are described.

1. INTRODUCTION

Radial Basis Function (RBF)([8],[1],[5],[7]) is a relatively simple neural network with two active
layers. The activation functions for the processor units of the hidden layer are radial basis functions
(for example Gauss functions). These functions generally have two parameters: the center and the
width.

The complexity of the network (and also the speed of the training process) depends on the number
of the radial basis functions with different center parameters. The correct determination of the center
number and position is a primary problem. If few training points are present, then we can use all of
them as center parameters for the radial functions. In this case the number of the processor units in
the hidden layer is equal to the number of the training points. If the number of the training points is
high, we can not use all of them. In this situation a single neuron for a group of similar training points
can be considered.

These groups of similar training points can be identified by using clustering methods. By clustering
a data set is divided into regions of high similarity, as defined by some distance (metric). In most
instances, a prototypical vector (the cluster center) identifies a cluster. Hence, the problem of cluster
optimization is twofold: optimization of cluster centers and optimization of number of clusters. The
latter aspect has often been neglected in standard approaches (static clustering methods), as these
typically fix the number of clusters a priori. In contrast to static, dynamic clustering does not require
the priori specification of the number of clusters.

The most popular method for the determination of the center parameters for the RBF neural net-
works is the K-Means algorithm [10]. K-Means has many disadvantages. An improved version of
K-Means is the Generalized K-Means algorithm [9]. Generalized K-Means also has some drawbacks.
The most important disadvantage is that it requires prior specification of the number of clusters.

To overcome this shortcoming of fixing cluster number a priori, there were some tentative to develop
dynamic evolutionary clustering algorithms.

A dynamic evolutionary method could be more efficient for the determination of the center param-
eters for the RBF neural networks. Some experiments using a new dynamic evolutionary clustering
method, the Genetic Chromodynamics (GC) ([2],[3],[6]), are described. The GC method is described
in the next section and after that some results are presented. A standard interpolation problem is
considered, and is solved by using RBF neural network. To reduce the network complexity clustering
methods are used. Both Generalized K-Means and GC are used, and the obtained results are compared.
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2. GENETIC CHROMODYNAMICS

GC is a new kind of evolutionary search and optimization metaheuristics ([2],[3]). GC is a meta-
heuristics for maintaining population diversity and for detecting multiple optima. The main idea of the
strategy is to force the formation and maintenance of stable sub-populations.

GC based methods use a variable-sized population, a stepping-stone search mechanism, a local
interaction principle and a new operator for merging very close individuals.

Corresponding to the stepping-stone technique each individual in the population has the possibility to
contribute to the next generation and thus to the search progress. The stepping-stone search combines
the advantages of elitist and diversity maintaining strategies.

Local interaction principle may have several expressions. For instance, we may consider the local
mating and the local subpopulation recombination models. Recombination mate of a given individual
is selected within a determined mating region. Only short range interactions between solutions are
allowed. Local mate selection is done according to the values of the fitness function. An adaptation
mechanism can be used to control the interaction range, so as to support sub-population stabilization.
Within this adaptation mechanism the interaction radius of each individual could be different.

To enhance GC, micropopulation models can be used [6]. For each individual we may consider a
local interaction domain. Individuals within this domain represent a micropopulation. All solutions
from a micropopulation are recombined using local tournament selection. If the local domain of an
individual is empty, then the individual is mutated.

Within GC sub-populations co-evolve and eventually converge towards several optima. The number
of individuals in the current population usually changes with the generation. Very close individuals are
merged. A merging operator is used for merging very close individuals. At convergence the number
of sub-populations equals the number of optima. Each final sub-population hopefully contains a single
individual representing an optima, a solution of the problem.

GC allows any data structure suitable for the problem together with any set of meaningful varia-
tion/search operators. For instance, solutions may be represented as real-component vectors. Moreover,
the proposed approach is independent of the solution representation.

In the following a GC based clustering method is presented. This method is used for solving our
problem.

2.1. Solution representation. Let
X ={z1,..,zm},z; E R s > 1,

be the data set for clustering. The cluster structure of X is given by a fuzzy partition P = {4, ..., A, }
of X. Every class A; is represented by a prototype L; € R®*. L = {Ly, ..., L, } is the representation of
the partition P.

In the proposed clustering technique each prototype is encoded into a chromosome. Totality of these
chromosomes represents a generation.

The idea of the method is to determine formations of evolving chromosomes converging towards
prototypes of real clusters.

The initial population is randomly generated and it contains a large number of individuals. The
operations involved in the searching process are selection, crossover, mutation and merging.

2.2. Interaction range. For each individual in the population (a chromosome representing a proto-
type) a mating region is considered as the closed ball with center ¢ and radius d*

Vie,d*) = {yld(c,y) < d"},
where the interaction radius d* depends on the chromosome.
Initially we consider the neighborhood distance for each chromosome as the standard deviation of
all points. For a chromosome L the mean distance § between the points in V (L, d*) and L is given by

g:i d(l‘,,L)’

n
i=1 dr
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where 1, ...,2,,. are the points in the neighborhood with radius d* of L.

When the points in V (L, d*) are uniformly distributed, the value of § is %*, where 5 € (1,2] is a
fixed number, which depends on the dimension s of the search space (generally the best value for j
is s\/5).We want to adjust d* such that § to be equal to d‘%, Thus if § < % , then the next value for

d* is (9, else 6. If there are not at least two points in the neighborhood of the chromosome, then the
previous distance value is not modified.

2.3. Fitness function. The considered fitness function is a sum of radial basis functions centered at
the points of the set that has to be classified.
Fitness value of the chromosome L may be written as

¢ 1
D) :; do (2, L) + C’

where a > 1 and C > 0.
The role of the constant C is to prevent infinite or too great values for the fitness function, and
together with a controls the granularity of the clusters.

2.4. Selection. A micropopulation model and a local tournament selection are used.

At each step of the generation process every chromosome is selected to produce an offspring through
crossover or mutation. The mate for the crossover operation for an individual s is selected among the
chromosomes in its neighborhood with a proportional selection. In this case the selection probability
of an individual ¢; in the neighborhood of s is

D= () )
' ZqéV(&d*) f (Cj)

A random number r € [0, 1] is generated, if the condition

j—1 J
Z pi <rT SZ Di
=1 1=1

is fulfilled, then the chromosome c; will be selected as a mate of s.

Later the mate will be selected as first parent to produce its offspring, for this reason at crossover only
one new chromosome is generated. If there is no mate for the crossover operation in the neighborhood
of radius d* of an individual, then the mutation operator is applied.

2.5. Crossover. An individual can be involved into a crossover operation only with individuals that
are at smaller distance than d*. The crossover operation is a convex combination of the codes of the
genes. The coefficient of the combination is a randomly generated number for each gene.

Consider the chromosome ¢ = (cy, ..., ¢s) and the mate d = (dy, ...,ds) selected for crossover. Off-
spring chromosome is 0 = (01, ..., 05) :

0; = ;C; + (]. — ai) diyi=1,...,s,
where a; are random coefficients having uniform distribution in [0, 1].

2.6. Mutation. Mutation is an additive perturbation of the genes with a randomly chosen value from
a normal distribution N (0,0). Offspring of chromosome ¢ = (¢, ...,¢5) is 0 = (01, ..., 05), obtained as

0; = Ci + Ti,
where 7; has the normal distribution N (0, 0). Therefore we may write
r; = oN;(0,1),
where o is the mutation step size and N;(0, 1) is the realization of a normal random variable.

2.7. Survival. At each generation every chromosome is involved in crossover or mutation. An offspring
can replace only its parent. When an offspring is produced, it is compared with the parent and the
best (with better fitness) is introduced in the new generation.
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2.8. Merging. An effect of the crossover operation is that the chromosomes in the same subpopulation
are overlapping after a number of iterations. When the distance between two chromosomes is smaller
than a considered value e (merging radius), they are merged. In this way, the size of the population
decreases during the process until n individuals are remained, where n is the optimal cluster number.

2.9. Termination and fuzzy class detection. If after a fixed number of iterations there are not
changes in the population, the process stops and the individuals constituting the last population are
considered as prototypes of the detected clusters. For all points the fuzzy membership to the clusters
determined by the prototypes is calculated according to the formula
1
s (L)’
k=1 d*(z;,Ly)

A; (z5) =
wherei=1,...n;5=1,...,m.

3. NUMERICAL EXPERIMENTS

We consider a standard interpolation problem.
A RBF neural network is used to approximate the function

7:00,1] > R, f(z) = <x—%>3-l+4y.

At the I'" step of the learning process the global learning error is calculated according to the formula

LN
El:N;(Zi_yi)2a

where N is the number of the points in the training data set, z; is the desired output and y; is the
network output.

Consider M inputs that do not belong to the training set. The generalization error associated with
M is calculated according to the formula

1 M
2
EQZM;(Zi_yi) '

3.1. Experimental Condition. The learning rate for the training process is fixed to 0.1. The learning
process stops if the global learning error decreases to 0.00005.
In our experiments the generalization error is calculated using M = 400 inputs from the interval [0, 1].
Both the Generalized K-Means and the GC algorithms are used for clustering data.
The parameters for the genetic clustering algorithm are:
- initial population size: 200;
- parameters for the fitness function: a = 1,C = 0.00001;
- mutation step size: o = 0.00001;
- merging radius: € = 0.02.
The clustering process stops if there is no change in the populations after 50 iterations, or if the
number of iterations reaches 5000.

3.2. Experiment 1. A fixed input data set, with 100 data points, organized in 18 clusters is considered.
The GC algorithm founds the number of the clusters and a center for each of them (fig. 1.). Using
these 18 centers for training, in 10945 epoches the 0.00005 global learning error is achieved. The
generalization error is 3.442700794496429E-4.

For the K-Means algorithm the number of the centers is randomly generated between 10 and 25 (we
suppose that there are more than 10 and less than 25 clusters). 10 tests with 10 different values for the
number of the centers were performed. The results are presented in Table 1.

The mean generalization error using the K-Means algorithm is: 0.002228871.
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 RBF Training

FIGURE 1. Data set with 100 training samples organized in 18 clusters, centers deter-
mined by the GC algorithm and the output of the RBF Neural Network after 10945
epoches.

No. of Centers No. of Epoches  Generalization Error

10 42386 0.003929447755582894
11 26312 0.0039125335843709025
12 15889 0.0038635588999552293
14 8218 0.0037191067346458145
16 2153 0.0028095882895919533
17 2479 0.002400189413222201
18 5466 7.485072155731134E-4
19 10208 5.057298901372404E-4
20 10017 2.240292093213028E-4
23 4918 1.76023288279397E-4

TABLE 1. Generalization errors obtained in 10 runs, using the Generalized K-Means
algorithm and 10 different values for the number of centers.

A better result is obtained with the GC based dynamic clustering technique. The generalization error
for GC is smaller. GC is able to determine the optimal number of the centers. Using the K-Means
method much better result is obtained by using 18 or greater value for the number of the centers,
than using 17 or a smaller value (18 was the real number of the centers). The learning process is very
sensitive to the number of the clusters.

3.3. Experiment 2. 10 data sets with 100 randomly distributed points are considered. Both the
K-Means and the GC algorithms are performed. The number of the centers for the K-Means algorithm
is fixed to 25. The obtained results are presented in Table 2. and Table 3.

The mean generalization error is 0.003419943 using Generalized K-Means and 0.003357283 using
GC.

Better result is obtained by using the GC based method. The mean generalization error is smaller
for the GC algorithm. Using GC the number of the cluster centers is not a priori specificated.

3.4. Conclusions. In both experiments better results were obtained by using the genetic algorithm.
The mean of the generalization errors is smaller for GC technique. Experiment 1 proved that the
learning process is very sensitive to the number of the clusters (this is a priori specificated in the case
of the static clustering method). The GC based dynamic evolutionary clustering method is able to
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Generalized K-Means
Id. set No. of Centers No. of Epoches  Generalization Error

1 25 3796 0.004910095167999367
2 25 3403 0.0015323728028574296
3 25 3531 0.0031077660275593572
4 25 3477 0.0011937407917221928
) 25 2007 0.0029516540972555575
6 25 2418 0.003354267453187255
7 25 3508 0.004110996687588495
8 25 3662 0.001079151961924775
9 25 2743 0.006245060418005246
10 25 4119 0.00571432481480872

TABLE 2. Generalization errors obtained in 10 different runs, using the Generalized
K-Mean algorithm and 10 data sets with 100 randomly distributed samples.

Genetic Chromodynamics
Id. set No. of Centers No. of Epoches  Generalization Error

1 25 3831 0.0048167188232168335
2 28 1377 0.0019146090647390935
3 26 2510 0.002650884708119015
4 28 1568 8.894281720724966E-4
5 26 1722 0.0027860163173894677
6 28 1494 0.003651758302036659
7 25 3541 0.004255004659509415
8 24 3318 8.108781955866825E-4
9 27 1861 0.006416108804838487
10 26 3097 0.0053814183758560405

TABLE 3. Generalization errors obtained in 10 different runs, using the Genetic Chro-
modynamics algorithm and 10 data sets with 100 randomly distributed samples.

determine the optimal number of the class centers. These centers are used as training data for our RBF
network. Automated detection of training centers is an important advantage, especially in the case
when the number of training samples is high. In this situation we can not fix this parameter manually.
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A method of solving multiple objective linear fractional programming
problems

Silviu Dumitrescu, Bogdana Pop

Abstract. The aim of this paper is to develop an interactive method of solving
multiple objective linear fractional programming problems using an extended Rosen
algorithm.

Starting from the idea of Rosen’s algorithm, in 1999 Cocan and Pop proposed a
method of solving convex programming problems with several objective functions op-
timizing more than one criteria over a common direction. When the case of linear
fractional programs is considered, the optimization of a convex one input value func-
tion should be changed by the algebrical selection of the optimal value of a decreased
one input value function. The advantage of this change is proved and a new algo-
rithm is formulated here. On the basis of the proposed method illustrative numerical
examples are solved.

Keywords: linear fractional programming, multiple objective programming.

1. INTRODUCTION

In this paper, an interactive method of solving multiple objective linear fractional programming
problems using an extended Rosen algorithm is developed. Extended Rosen Algorithm (ERA) as an
extension of the classical algorithm of the convex programming is presented in Section 2 in order to
solve a linear fractional programming problems with one objective function. Other algoritms in linear
fractional programming problems are presented in [3].

Starting with the idea of the Rosen’s algorithm [2], in [1] Cocan and Pop proposed a method of solving
convex programming problems with several objective functions optimizing more than one criteria over
a common direction. A multiple objective linear fractional programming problem is considered now.
In such a case, the optimization input value function should be changed by the algebraical selection of
the optimal value of a decreased one input value function. The advantage of this change is proved in
Section 3 and a new algorithm is formulated in Section 4. On the basis of the proposed method an
illustrative numerical example is solved in Section 5.

2. EXTENDED ROSEN ALGORITHM

Consider the linear fractional programming problem

(1) mm{f@ﬁ:g83|xeX}

where

(i) X ={xz € R"| Az < b} is a convex and bounded set,

(ii) A is an m X n constraint matrix, b € R™, z is an n-dimensional vector of decision variable,

(iii) N(z)=c'z+cy, D(z) =d'z +dy, c,d € R",cy,do € R, d"z +dy > 0,Vx € X.

Let be

(i) 7 a feasible solution for problem (1),

(ii) A, amaximal submatrix of matrix A having the form (a;, , a4, ..., a;, )" , such that a;, T = by,
ije{l,.,m}, j=1,...,n;

(iii) P. = I, — AT (ATATT)f1 A, the projection matrix over the subspace D = {z € R" |
aj;x =0, j=1,...,7} (according to [1]);

(iv) (J)T = _P,(Vf(z))" the P, projection of the gradient of function f;

(v) f:{AER|£+AJeX}
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(i) ¢: 1= R o\ =f (55+ )\dA)the restriction of function f over {x €EX|INER, =2+ )\d}
Proposition 1. P, is a positive defined matriz.
Proposition 2. P, is a symmetric matriz.

Proposition 3. T is an interval [, B] in R, where

b,’ —a'z . bz —a'T
o = max — ,8 = min — .
ilaid<0 atd ilaid>0 atd

Proposition 4. Function ¢ decreases on 1.

Thereby, Extended Rosen Algorithm (ERA) to solve problem (1) is:

e Step 1. Read the coefficients of problem (1), ¢, co, d, dg, A, b as input values.

e Step 2. Find z° € X as a feasible solution of problem (1) which satisfies exactly n equalities
and (m — n) strictly inequalities of the system of constraints. Initialize & = 0.

e Step 3. (Optimality test) Evaluating

@ P (Vi) =0

3)  (4,A7) "4, (Vf (z*) <0
if both (2) and (3) are true then STOP, with z* as a solution of Problem (1). Otherwise, choose
(dk)T =—-P.(Vf (mk))T if (2) is false or (dk)T =—-P._(Vf (xk))T if (2) is true and (3) is
false, as a direction of minimization.
e Step 4. Compute z*+! = zF + \,,,.d*, where

. b, — aPz*
Amaz = Min —
plardk >0 abd

and go to Step 3 with k = k + 1.

3. THE MODEL OF MULTIPLE OBJECTIVE LINEAR FRACTIONAL PROGRAMMING PROBLEM

Consider the multiple objective linear fractional programming problem

0 el (4 8 ) -

where

(i) X ={ze R"| Az <b}is a convex and bounded set,
(i) A is an m X n constraint matrix, x is an n-dimensional vector of decision variable and
be R™, p>2,
(i) Ni(z)= () z+di, D;(x)=(e) o+ fi,Vi=T,p,
(IV) ciaei € Rnadiafi € R,\V/’L = ma
v) (¢) 2+ fi >0Vi=T,pVee X.
The term ”min” being used in problem (4) for finding all efficient solutions in a minimization sense
(13)-
In the following, we assume that a condition for a current point z* to be accepted as the solution
»
of problem (4) is to satisfy the inequality 3" (zn—zp (2*))* < K where z, = min {z, (z) | z € X},
h=1
h =1,...,p. These facts are formulated according to the definitions described by Cocan and Pop in [1].
Using onmly the differentiability of the objective functions f;,, fi,,..., fi,, i; € {1,2,...,7}, j =
1,2,...,q, Theorem 3.2 from [1] proved that s € R" is a common direction of minimization for the
values of the above mentioned criteria in zq iff s(Vf;,(z0))” <0,j =1,2,...,q.
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Proposition 5. Let s* € R™ be a common direction of minimization for the values of criteria

Jirs fins o fig, 15 €{1,2,...,p}, j = 1,2,...,q, in x*. The minimal values of f;,, fi,, ..., fi, are obtained
at the point x* + \*s*, where

A*= min bi—a'a”
ilais*>0 als* '

4. THE SOLUTION METHOD
Step 1. Establish the constant value K and put ¢ = 0.
Step 2. Compute values (zn);,_, 5, using ERA.
Step 3. Choose z° € X as a feasible solution of problem (4).
Step 4. If Vz(2') = 0, then 2 is the optimal solution of the problem. Otherwise go to Step 5.

e Step 5. (Acceptability test) Compute S (z7) = i (zn — 21 (m’))2

— If S (2) < K, then favorable STOP with 2’ the acceptable solution of the problem.
— If S (2%) > K and a h € {1,...,r} exists such that (z; — fr(z'))* < £, then go to Step 6.
— Otherwise unfavorable STOP because convenient solution does not exist for problem (4).
e Step 6.
— Search a common direction of minimization s solving the following system of inequalities
S(Vfiy ()T < 0,5 =1,2,.0p
— If there is no such a direction s then let s be the direction of minimization for the criterion
which realized the largest nonconcordance in Step 5 (that is for the criterion A* for which
maxp—1,2,...p (2h — 2n (ac’))2 = (2n+ — 2n+ (:c’))Q)
— Compute
Amax = Min {m} .
ilats>0 a's
and according to ERA go to Step 7 with 2/t = &% + Apnaxs.
e Step 7. If S (z'*1) < S (z) then go to Step 4 with ¢ = i+ 1. Otherwise, compute /! = '+ \s
for A < Amax and return to the test of Step 7.

5. COMPUTATIONAL RESULTS

In order to illustrate our method let us consider the following multiple objective linear fractional
programming problem.

. Ty Ty T+ T3
5 bX) ” — _’ __’ J—
(5) min <z(a:) <$2 Pt R—— >>

subject to

6) 1<umz<4,i=1,23.

The marginal solutions of problem (5)-(6) are described by the table.

x z1(x) 22(x) 23(x)
A 4L 4 -1
B (44,1 1 -1
c (1,41 ©OZ -1 -1
D (1,4,4) ©Z -025 -16
E (1,1,4 1 —025 23
F (41,4 4 -1 B3

The values resulted after the execution of the algorithm are grouped into the following table.
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1 x 21 (a:’) 29 (a:’) 23 (x’) S (a:’)
0 (1,1,4) 1 -0.25 —-2.5 14.625
1 (1,4,4) 0.25 —-0.25 —1.6 14.872
2 (1,3,4) 0.33 —-0.25 —1.75 14.632
3 (1,2,4) 0.5 -0.25 -2 14.375
4 (1.667,4,2.667) 0.417 —0.625 —1.33 12.780
5 (1.571,3.333,2.5) 0.471 0.629 -1.346 12.470
6 (3.96,3.333,1) 1.188 —-3.96 -1 3.132
7 (4,4,1) 1 —4 -1 2.812
8 (1,2.5,2.5) 0.4 —-04 —1.429 14.27
9 (3,3.5,1.5) 0.857 -2 —-1.111  6.28

10 (3.8,3.9,1.1) 097 —345 —1.02 299
11 (39,395,105 098 —371 —1.01 2.83
12 (3.98,3.99,1.01) 099 —394 —1.002 3.23
13 (2,3,3) 066 —0.66 —1.5 12.32
14 (3.8,3.9,1.2) 097 —3.16 —1.04 3.32
15 (3.98,3.99,1.02) 099 -390 —1.004 3.23
16 (3.6,3.9,1.1) 092 —327 -—102 313

17 (3,39,11) 076  —2.7 —1.02 3.05
18 (3.5,4,1) 0875 —35 -1 289
19 (3.8,4,1) 095 —-38 -1 278

3
The best evaluation of the sum S (z) = Y (25, — z1(2))? is 2.
h=1

REFERENCES

[1] Cocan, M., Pop, Bogdana, An algorithm for solving the problem of convex programming with several objective func-
tions, Korean J. Comput. Appl. Math., 6 1 (1999), 79-88.

[2] Rosen, J. B., The gradient projection method for nonlinear programming, Part I, Linear constraints, STAM J, 8 (1960),
181-217, Part II, Nonlinear constraints, SIAM J, 9 (1961), 514-532.

[3] Stancu-Minasian, I. M., Fractional Programming: Theory, methods and applications, Kluwer, Dordrecht, 1997.



87

A parallel procedure for the exhaustive numerical solution of the
polynomial equations

Ioan Dzitac, Grigor Moldovan, Horea Oros

Abstract. For the exhaustive numerical determination of the real roots of an alge-
braic equation with real coefficients the Sturm’s sequence method can be used. The
complex roots of such an equation can be derived by means of the Bairstrow method.
Both methods are of a serial type. In this paper a parallel strategy for simultaneous
computation of the real and complex roots of algebraic equations with real coefficients,
based on a combination of iterative and randomized methods, is proposed.

1. INTRODUCTION

Consider the normalized algebraic polynomial equation, of degree n (with p[0] = 1), with real
coefficients and without zero-roots (with p[n] # 0)

pol[n](xz) = Zp[z] xx" =0
=0

For the determination of the complex roots we take into account the fact that in the complex plane
their afixes are situated between the circles of radius r = rinf and R = rsup (fig. 1). Thus, if { is a
complex root of pol[n] and a = re and b = im( are the real and the imaginary part of { respectively,
then we have a,b € (=R, R) with R? > a® + b* > r2. Since the coefficients of the equation are real
numbers, the nonreal roots are complex conjugated. Therefor it is sufficient to determine the roots
with the afixes situated in the upper plane, delimited by the x-axis.

Using the polar coordinates

p = ro = polar radius

6 = theta = polar argument
we have

a=pcosh, b=psinf, with 6 € [0,7] and p € (r, R).

.
N

FIGURE 1. The relationship between coordinates.

In the search for the complex roots we use p processors in parallel: P[1], P[2],..., P[p]. The interval
[0, 7] is splitted in p subintervals of length 7/p. Thus, the processor P[k] searches the solution for
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If one complex root is determined and we denote it by (a, b), then we can reduce the degree of the
equation by 2, by the dividing pol[n](x) by x? — 2re[k]x + re[k] * re[k] + im[k] * im[k]. The remainder
of the division has the form: r0[k]z + r1[k].

For this division we use the processor DIV. At the input we have the dividend and the divisor, as
vectors of coefficients, while at the output we have the quotient and the remainder (which has to be
equal to zero).

2. PROCESSOR FOR THE RANDOM GENERATION OF THE POLAR RADIUS

The processor GDP will randomly generate the values of p = ro, using the formula: p = r + (R —
r) * rnd, where rnd is a pseudorandom number generator.

rinf

rsup GDP © >

F1GURE 2. GDP processor.

3. PROCESSOR FOR THE RANDOM GENERATION OF THE POLAR ARGUMENT

The processor GAP randomly generates the values 6[k] using the formula [k] = (k—1)7/p+ (7 /p) *
rnd = theta[k].

2 teta[Kk]
pol GAP =

F1GURE 3. GAP processor

4. PROCESSOR FOR THE DETERMINATION OF THE REAL AND IMAGINARY PARTS

The proccesor PRI uses the transformations:

re = rocos(theta), im = rosin(theta),

with theta € [0,7]and ro € (rinf, rsup).
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1o .
? PRI re, im o

Ficure 4. PRI processor

5. PARALLEL PROCEDURE FOR THE DERIVATION OF THE NON-REAL ROOTS

procedure com_par(n,pol,eps,p);
select eps,p;

begin
a:=rinf (n,pol) ;b:=rsup(n,pol)
poz:=vars(a,b); neg:=vars(-b,-a);
com:=n-poz-neg;
m:=0;

while (m <> com/2)
for k=1 to p do in parallel (asynchromnous)
ro[k] :=rinf+(rsup-rinf) *rnd;
tetalk] :=(k-1) *pi/p+rnd*pi/p;
rel[k] :=ro[k]*cos(tetal[k]);
im[k] :=ro[k]*sin(tetal[k]);
call div(pol,imp[k],n,2);
if (r0[k]1=0 or rO[k]<=eps) and
(r1[k]1=0 or ri[k]<=eps)
then m:=m+1;
endif;
endfor;
endwhile;
end.
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A parallel algorithm for the solution of the polynomial equations possesing
real roots only

Toan Dzitac, Simona Dzitac, Madalina Vileanu

Abstract. The problem of parallel localizing and computation of the real roots of
polynomial equations which possess only real roots is solved. In order to separate
the real roots of a polynomial some serial methods exists, e.g. the Sturm’s sequence
method [1], Vincent’s method [2]. In this paper we present a parallel algorithm based
on the Newton’s method and some parallel concepts from [3] and [4]

1. INTRODUCTION

There are practical situations in which we know that an algebraic polynomial equation has only real
roots (e.g., in the determination of the eigenvalues of a symmetric matrix, the charateristic equation of
a real matrix has this property).

Consider the normalized algebraic polynomial equation, of degree n, with real coeflicients, (with
p[0] = 1) and having all real roots not equal to zero, (with p[n] # 0):

n

(1) pol[n](z) = Zp[z] xx" =0

i=0
2. PARALLEL MODEL OF THE NEWTON’S SIMPLIFIED MODEL

If the number of positive roots of the equation (1) is poz then the number of negative roots is
neg = n — poz. Let us assume that we have at our disposal a computation system consisting of p + ¢
processors. We distribute p processors for the searching of the positive roots and g processors for the
searching of the negative roots. The numbers p and ¢ are proportional to the numbers poz and neg.
We call this method the news_par.

In order to search the negative roots, the news processes will be activated with an initial value equal
to the one at the right end of the interval. It will be stoped when the number of the founded positive
roots nrdap will be equal to poz.

For searching the negative roots, the news processes will be activated with an initial value equal to
the left margin of the interval and will be stoped when the number of found negative roots nradn will
be equal to neg. These initializations are performed in order to ensure the convergence.

The main program Prog. 1 activates in parallel the p + g processors. The processors function
asynchronously in parallel.

Prog. 1 news_par.

procedure news_par(n, pol[n], eps)
select eps;

begin

rinf(n, polln], eps);

b := rsup(n, poll[n], eps);
call vars(vs);

o))
1]

poz := n - poz;
neg := n - poz;
cobegin

for k = 1 to p do in parallel asynchronous
alk] := a + (kx-1)*(b-a)/p;
b[k] a + kx(b-a)/p;
radp := news(n, polln], alkl, blk], bl[k], eps);
if (nradp = poz) then exit;
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endfor;

for k = 1 to q do in parallel asynchronous
alk] := a + (k-1)*(b-a)/q;
b[k] a + kx(b-a)/q;
radn := news(n, polln], -b[k], -alk]l, -b[k], eps);
if (nradn = neg) then exit;
endfor;
coend;
end.

3. RANDOMIZED FILTERED ASYNCHRONOUS METHOD

An algebraic polynomial equation is equivalent to a system of nonlinear algebraic equations, by
Newton’s relation of recurence

(2) Ti 4+ To+ otz =by, (1) () o (20)? = b2, el ()" (22)" o+ (20)" = b

The values of by,bs ...,b, can be determined by recurence, in terms of the coefficients of the initial
equation. We solve the system 2 using MIARF algorithm described in [3] pp. 100-114.
By using the Newton’s recurence relation

(3)  Si=(2) + (@) + -+ (za)" = by,

we may form the partial series (asyncronous parallel)

4) o= file") =2t + b - S

(5) el = fi(a®) = 2z'+\1/b2i+1 + x5, — S&. | for the components with odd index
(6) a5t = foi(a%) = 5 {/bai + 25, — Sk, for the components with even index
where

(7) s — 1, if xo; is positive
T | =1, if x9; is negative

If the number of positive roots of equation (1) is poz, then the number of negative roots is neg =
n — poz.

Now we yield a procedure for the determination of the number of positive and negative roots, by
means of the sign variation occuring in the Sturm’s method.

Procedures for computing the number of positive and negative roots.

procedure nradr(n, poll[n], eps);
select eps;
begin
rinf(n, pol[n], eps)
b := rsup(n, poll[n], eps)
call vars(vs);
poz := vars(a) - vars(b);
neg := n - poz;
end.

o]
]
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Assume that we have at our disposal a computing system consisting of at least n = poz + neg
processors (otherwise we have to redistribute proportionally the computing tasks).
For symmetry we may consider:
e positive roots: zp[i], i =1...poz
e negative roots: zn[j], j =neg...n
We use two procedures of parallel MIARF type, which communicate and interchange data while exe-
cuting, by means of the host processors’ memory, asynchronously. The master processor P manages the
parallel asynchronous execution of the processes MIARF _POZ and MIARF_N EG; these processes
are parallel.
The processor P receives the subvectors consisting of the positive components and negative compo-
nents respectively and it combines those subvectors to obtain the vector of the current approxiamtion,
at each step of the asynchronous iteration.

Procedure for computing the positive roots.

procedure MIARF_P0Z
receive xv from processor P;
begin
for i = 1 to poz do in parallel
if (ex(xv[il) > 0)
then xpli] := radl[il (ex(xv[il))
else xp[i] := rand(rinf, rsup);
endif
send xp[i] to processor P;
endfor;
wait message from processor P;
end.

Procedure for computing the negative roots.

procedure MIARF_NEG
receive xv from processor P;
begin
for j = poz to n do in parallel
if (j is even) then
if (expression under square root, ex(xv[i]), is positive)
then xn[i] := -rad[i] (ex(xv[j]))
else xn[j] := rand(-rsup, rinf);
endif;
else xn[j] := rad[j](ex(xv[j]1));
endif;
send xp[j] to processor P;
endfor;
wait mesaj from processor P;
end.
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The construction of completed skew group rings
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Abstract. The existence under natural restrictions of a completed skew group ring
R % G of a given profinite ring R with identity and a profinite group G is proved.
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1. THE COMPLETED GROUP RING

By a profinite ring (group) we mean a compact totally disconnected ring (group). By N denote
the set of all natural numbers and by N* the set N\ {0}. By Aut R it is denoted the group of all
automorphisms of a ring R.

An important construction in the ring theory and the algebraic number theory is the completed
group ring, which associates to each profinite group G and each profinite ring R a profinite ring R [[G]]
containing the usual group ring R [G] as a dense subring (see, e.g. [2]).

Let R be a profinite ring with identity and let G be a profinite group. We remind how a totally
bounded (i.e., Hausdorff and precompact) ring topology on the group ring R [G] is introduced [1].

Let V be a two sided ideal of R and let IV be an invariant subgroup of GG. Consider the two sided
ideal of the group ring R[G],

(V,N)=VI[G]+(1-N),

where (1 — N) is the ideal of R[G] generated by the set 1 — N and

i=1

V[G] = {szgl n e N*a U1y .0y Un € V, 91,3 9n € G} .

Since N(V, N) = 0, where V runs over all open ideals of R and N runs over all open invariant
subgroups of G, the family {(V, N)}, where V runs over all open ideals of R and N runs over all open
invariant subgroups of G, gives a totally bounded topology ¥ on RI[G].

The completion of the topological ring (R[G], %) is called the completed group ring. The completed
group ring is denoted by R[[G]].

Remark 1. This construction of completed group ring is equivalent to the construction given in [2],
through the inverse limit of compact rings R[G/N], where N runs over all open invariant subgroups of

G.

Remark 2. If (R, %) is a profinite ring, (G,%2) is a profinite group and ¥ is the above constructed
ring topology on R[G], then T|R = %1 and T |G = %s.



94

2. THE COMPLETED SKEW GROUP RING

Let R be a ring with identity, let G be a group and let o : G — Aut R be a group homomorphism. If
g € G and r € R denote 7 = o (g) () . The skew group ring R * G is defined as the free left R-module
with G as a free generating set. The multiplication on R % G is defined distributively by using the
following rule

(r191) - (r2g2) = Tngl 9192,
for all 1,72 € R and ¢1,92 € G.
Remark 3. Ifo(g9) =idg for all g € G, then R * G coincides with the group ring R[G].

Remark 4. For each r,r1,72 € R and g, 91,92 € G we have:

a) 09=0; 19=1; r! =1;
b) (r1 +r2)? =r{ +1;
c) (ri-ro)? =r{ r3;

d) r9192 — (7-92)91_

Let R be a profinite ring with identity and let G be a profinite group. If V is an open ideal of R and
if V is an open subgroup of G, consider the subgroup of R x G,

(V,N)=V*+G+(1-N),,
where (1 — N), is the left ideal of R * G generated by the set 1 — N and
k
VG = {quigi k€N v, .., €V g1, gk € G} .
i=1
Obviously, V % G is a right ideal of R x G.
Remark 5. If VI CV, for all g € G, then V x G is a two-sided ideal of R x G.
Indeed, if r € R, v € V and g¢,¢' € G, then
(rg) (vg') =r9 g9 €V xG.
Remark 6. If N C kero, then (1 — N), is a two-sided ideal of R*G.
Indeed, if r € R, n € N and g € G, then
(1=n)-(rg)=((1=n)-r)-g=(r—r"n)-g=(r—rn)-g
=r-(1-n)-g=rg-(1-g 'ng).

Let f : R — R' be a ring homomorphism, let ¢ : G — G’ be a group homomorphism and let
0:G = AutR, ¢’ : G' — Aut R’ be two group homomorphisms. It is obvious that the mapping

k k
) rigi— > f(ri) ¢ (9:)
=1 =1

is a group homomorphism of (R = G, +) in (R' * G', +) extending f and ¢. Denote by V the kernel of
f and denote by N the kernel of ¢.

Lemma 7. ker ® = (V,N).
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Proof. Since ® (vg) = f(v)p(g9) = 0, for all v € V and g € G, it follows that ® (a) = 0, for all
k
a€VxG Ifx=)> rg € R+Gand n € N, then

=1

k k
S(z-(1-n))=® <Z Tigi — Zn‘ (gm)>
k

= Zf (ri) ¢ (9:) — Zf (r:) ¢ (gin)

=0.

Therefore, ® () = 0, for all § € (1 —N), and thus ®(z) = 0 for all z € (V,N). This implies the
inclusion (V, N) C ker ®.

k
Conversely, let © = > r;9; € ker ®. We can assume, without lost of generality, that g1N = ... = g V.
i=1
Then there exists g € G such that ¢ (g1) = ... = ¢ (gx) = ¢ (g) - We can choose ny,...,n; € N such that
k k
gin1 = ... = ggny = g. Since ® (x) = 0, it follows that f <Z ri> ¢ (g) = 0. Therefore, f (Z ri> =0
i=1 i=1

k
and thus ) r; € V. It follows that
i=1

k k k
x = Zrigi - Zri9+ ZH‘!J
i=1 i=1 i=1
k k k
= Z Ti9i — Z Tigin; + Z Tig
i=1 i=1 i=1
k k
= Zrigi (1—mns)+ <Zr,> g
=1 =1

€ (V,N).
O

Lemma 8. If V runs over all open ideals of R and N runs over all open invariant subgroups of G,
then N (V,N) = 0.

k
Proof. Let © = Y r;g; be a nonzero element of R+ G (here r; # 0,1 =1, ..., k). Choose an open ideal V'
i=1

of R such that rz, ...k ¢ V and choose an open invariant subgroup N of G such that g;N # g; N for
alli,j=1,.,k, i #j. U ®yn:R+«G — (R/V)*(G/N) is the (group) homomorphism which extends
the natural homomorphisms R — R/V and G — G/N, then

k
Py N (2) = Z (ri+V)g;N #0,

i=1

ie,z ¢ (V,N). O

If A is a cofinite subring of a ring S, then there exists a two-sided cofinite ideal I of S such that
I C A C S (Theorem of Lewin, [3]). It follows immediately that for every ring .S, for every cofinite
subring A and for every two-sided ideal I of S, I C A, then exists a cofinite two-sided ideal J of S
such that I C J C A C S. Moreover, there exists a largest cofinite two-sided ideal J of S such that
ICJCACS.



96

Let now V9 CV, for all g € G. We introduce a totally bounded ring topology on R x G as follows:
for each left ideal (V, N) of RxG denote by (V, N) the largest cofinite two-sided ideal of R*G for which

VG C (V,N) C (V,N)C R*G.

—~—

Consider the finite intersections of ideals of type (V, N) as a fundamental system of neighborhoods of
zero for a ring topology ¥ on R x G. Its completion will be called the completed skew group ring.

Theorem 9. If V9 C V, for all g € G and for all open ideal V of R, then (R, %) is a topological
subring of (R*G,%) .

Proof. The inclusion i : (R,%1) = (R * G, %) is a topological embedding. Indeed, if V7, ..., V} are open
ideals of (R,%) and Ny, ..., Nj, are open invariant subgroups of (G,%>), then

Z(Vi n... ﬂVk) - (Vi,Nl) n...N (Vk,Nk).
O

Theorem 10. If VI CV, for all g € G, and for all open ideal V of R and Im o is finite, then (R,%1)
is a topological subring of (Rx G, %) and (G,%2) is a topological subgroup of the group of units of the
ring (R*xG,%).

Acknowledgement. I express my gratitude to Professors M.I. Ursul and V. Bovdi for their helpful
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Normal forms for nondegenerated Hopf singularities and bifurcations

Adelina Georgescu, Raluca-Mihaela Georgescu

University of Pitesti, Romania

Abstract. This aplication - oriented paper reveals some less obvious facts in dynam-
ical systems and bifurcation theory. Systems of two first-order ordinary differential
equations (ode) depending on one real parameter are considered. The derivation of
the real and complex normal forms of the corresponding vector fields of the Hopf sin-
gularity and around the Hopf bifurcation is sketched. The relationship between the
corresponding real and complex Liapunov coefficients is shown. The classical Hopf
bifurcation results for the linear versus nonlinear case are presented.

1. NORMAL FORM AT THE HOPF SINGULAR POINT

Proposition 1. [1] Let X(x) be a smooth vector field with a singularity at the origin satisfying
det DX(0) > 0, TrDX(0) = 0. Then the real normal form of X is given by

[2(N-1)]

0 7)) e fa 5) o () ot

k=2
where w = (det DX(0))'/2, N > 3, the square bracket stands for the integer part and ay,by, € R.
Proof. Let DX(0) = A. Then the eigenvalues of A are A\; » = +ivdet A = jw and the corresponding
eigenvectors read u=+iv. It follows that the real Jordan form of A is J = (2 —0w> , where P = (v|u).

Denote x = (21,22)7, x1,22 € R, m = (my,ma), mi,ms €N, e; = (1,0)7 and e; = (0,1)7. Since
J is not diagonal, the monomials x™e; are not eigenvectors of Ly and the normal form method is not
directly applicable. In order to obtain the diagonal form of A we use the real linear transformation
x = Py. Then the linearized equation becomes x = Py & Ax = Py & APy = Py & y =
P 'APy & y = Jy. Further, in order to put J into diagonal form we use the complex linear
transformation y = Pcz, where y = (y1,42)7, y1,2 € R, z = (Zl> = <y1 +z.y2> = (f) the
22 Y1 — 1y2 z
columns of P¢ are the normalized eigenvectors of J. Then, we obtain y = Pcz. In this way, the
linearized equation in y becomes Jy = Pcz & JPcz = Pcz & 7z = P(ElJP(cz & 7z = Jez. We have

1101 S B T N . _fiw O
PC_E(—'L' i)’ P. —§<1 _Z.>,1mply1ng.](c—<0 _Z.w).

In this way of the nonlinear equation x = X(x) reads by the normal form theorem, it follows that
the complex normal form of the nonlinear equation x = X(x) reads

; N
(2) z=Jc <§> +Zwr(z)+0(|z|N+1)’

where w,(z) are the resonant terms. Since J. is diagonal the monomials z™e;, i = 1,2 are the
eigenvectors of Ly. and the usual resonance conditions apply yielding the form of w,.(z). This conditions
are miA +modo = A © miA +(r—mi)ha =N & mi(A — Aa) +7h =\ © 2myiw — riw = Hiw &
2m, —r = +1 = r = 2m F 1, therefore the only resonant terms are those which have r an odd number,
ie.r=2k+1.

a) Fori =1 we have my -iw— 2k+1—my)iw=iw=>m — 2k+1)+mi =1=2m =2k+2 =
m1 =k+1,ms=k.

b) For i =2 we have my -iw — 2k +1—my)iw = —iw => my — (2k+ 1)+ my = -1 = 2m; = 2k =
mlzk,mzzk—l—l.

If follows that the resonance condition is satisfied for m = (k + 1,k), if i = 1 and m = (k, k + 1) if
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k+1§k kEkJrl

i = 2. Hence, up to some factors, the resonant monomials are given by z e; and z

k € Z*. Correspondingly, (2) becomes
[3(N-1)]

0 (-0 T (Gramhs) o)

k=1

ey, where

where ay, b, € R are constants.
Let us show that the real form of (3) is (1). To this aim taking into account that z = y; + iy2, we

have
_ (1 +i
AHzher = |zt zer = (yf +43) (11 + i) <0> = (i +93)*" (yl y2>

p— =, ] 0
zkzk+1e2 _ |z|kze2 — (yf +y§)2k(y1 — iya) <1> = (y% +y2 <y1 — zy2>

Since y = Pcz, in order to obtain the equation in y from (3), we multiply (3) by Pc. Then

Pc(2Ft1zke;) = (y2+y32)%* [(Z;) —i (‘jfﬂ . Similary Pc (2525 les) = (y2443)? [@;) +i ( ﬂ i

Thus, for each k € Z*, the set

{(yf +y3)% (‘Zl) (i +3)*" (ij) }

spans a subspace, G2¥*1 of H2*+1 complementary to Ly(H?**1). Here H?**! stands for the linear
spare of two dimensional vectors the entries of which are homogeneous polynomials of degree 2k + 1
and Lj is the Poisson-Lie operator.

Moveover, P¢ (3) becomes (1). O

Remark 2. For N =3, (1) becomes

(4) (Z;) = <g _0”> (Z;) + @2+ {al @1) + by <‘y¢f?>}+0 () -

Conclusion 3. Comparison of the real and complex normal form (1) and (3) respectively shows that
the coefficients ay, and by, in (1) are the real and imaginary part respectively of (3).

The detailed proof of Proposition 1 provides the method of constructing the normal form (1) of the
vector field X(x) defining a given vector ode & = X(x). In other words, by this method we find the
coefficients ay, and by,.

2. NORMAL FORM AROUND THE EQUILIBRIUM POINT

Consider a system
(5) X:f(X,Oé), X= (X1;X2)T €R27a€ ]Ra

with a smooth function f, which at a = 0 has the equilibrium x = 0 with the eigenvalues A\ =
+iwg,wp > 0. By the Implicit Function Theorem, the system (5) has a unique equilibrium xg(«) in
some neighborhood of the origin for all sufficiently small |a|, since A\ = 0 is not an eigenvalue of the
Jacobian matrix. Therefore, without loss of generality, we may assume that x = 0 is the equilibrium
point of the system for |a| sufficiently small. Thus, the system can be written as

(6)  %=A(a)x+F(xa)

where F' is a smooth vector function whose components Fy, F» have Taylor expansions in x starting
with at least quadratic terms.

Lemma 4. [3] By introducing a complex variable z = x1 + iza, for sufficiently small |a| system (6)
can be written as a single equation

() 2=A0)z+9(.50),

where g = O(|2|?) is a smooth function of (z,z, ).
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Remark 5. The function g can be written as a formal Taylor series in two complex variables (z and %)

_ 1 _
(8) g(z,z,a) = E mgkl(a)zkz’.
k+i>2

Lemma 6. [3] For all sufficiently small |a|, by an invertible parameter dependent change of variables

h h
z=w+ %wz + hpw + %U_ﬁa

the equation
O 2=xe+ B0 4 guzz+ 22221 0(2),

where A = Aa) = p(a) + iw(a), p(0) = 0,w(0) = wg > 0, and g;; = ¢;5(a), can be transformed into an
equation without quadratic terms

(10) b = dw + O(|w|?).

Proof. Let Ay = X and Ay = X be the eigenvalues of A(a) and denote ﬁ(i’j)’k = h(ﬂ%, i,j=0,1,2, k=
1,2. The eigenvalues of L4 are Am ; = miAi + mals — A, thus we obtain

A(2,0)71 :2A+OX_A:A7£0,

A(1,1)71:1-)\+1-5\—)\:5\7é0,

Ap2)1=0-A+2X =X =2 - X #0,

A(2,0),2 :2)\4-0'5\—5\:2)\—5\750,

A(1’1)72:1'A+1‘X_X:A7£0,

Aozya =0 A+2)— X=X #0.

Then, by normal form method, Table 1 can be constructed providing the expressions of by, ; in terms
of gg;- In fact, we must consider also the transformation zZ <+— @. Consequently, we obtain the
equation in @ corresponding to (10). However, due to the fact that in (3) the equation for Z is the
complex conjugate to the equation for Z and the transformation z <— w is the complex conjugate of
the transformation z +— w, the equation for w is the complex conjugate of (10). This is why it is
written no longer. In addition, we write hm for Am1 and Am, yms.2 = Buny yms 2

my Mma Am,l Am,l Xm,1 Xm,2 hm,l hm,2
1 920 J20 920 J20
2 0 A 2A—-—\ = = = -
2 2 2\ 20— A
3 _ g11 g11
1 1 A A = —
911 g11 X h\
N N Jo2 Joz2 Jo2 Jo2

2 2 222-A)  2X

Table 1.

The inverse change of variable is given by the expression

h h
w=2z-— %22 — h112z — %22 + 0(|z]?),
or taking into account Table 1, we have
920 o Gg11 __ go2 5 3
z —2Z — ———Z° + O(|2|°),
2\ A 22X\ = \) (1=
920 911 902 _o

hile z = Zw? + T—ww =
while z w+2)\w + /\ww—|—2(2/\_)\)
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Therefore, by differentiating the last equality we obtain

W o= i- %‘)%z - g%( % 4 25) — 72(2‘202_ Vi 0(2%)
= 31— g%z —~ g%z) + é(—g%z —~ 72(2‘202_ N z2) + O(|2|*)
= 1= 52 - T A0e + 8227 4 guzz 4 T2 4 0(2))
+[—g%z —~ %z](i\z + %22 + g2z + %22 +0(2]%)
= Az— 92ﬂz2 - gn%zi - 2(;570_“’»22 +0(|2%)

= A <w B0y Iy T2 1172) _ 920,

O

Assuming that we have removed all quadratic terms, let us try to eliminate the cubic terms as well.
There exists only one resonant term, as the following lemma shows.

Lemma 7. [3] For all sufficiently small |a|, by an invertible parameter dependent change of variables

h12

h
30 w21I) + T’LU’[Z)Q +

h
z=w4 2w 4 ==

hos _s
6 2 6

6

the equation

(11)  2=de+ 80,84 B0, T2 02 I8 1 012,
6 2 2 6

where A = Aa) = p(a) + iw(a), p(0) = 0,w(0) = wo > 0, and g;; = ¢i5(a), can be transformed into an

equation with only one cubic term

(12) = dw + cw’w + O(jw|*),
where ¢; = ¢1(a).

Proof. The eigenvalues of Ly are Ap; = miA; + mads — A, therefore we obtain
A(3’0)71 :3)\4—0'5\—)\:2)\750,

A(2’1)71 =224+1-A=A=X24+X1=0,

(1,2),1 =1- 242X - A =2\ #0,

(0,3),1 =0-A4+30—-A=31x-)X#0,

(3’0)72:3/\4-0-/_\—/_\:3)\—/_\750,

(2’1)72:2)\4-1-)\—)\:2)\750,

(1’2)72:1-)\+2/_\—/_\:)\+5\:0,

(0’2)’2:0-)\4-2)\—)\:)\750.

It follows that the resonant terms are wi’e; and w?wes (Table2) and

e e e
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30 2\ 3A—2 g% 9% % 6(3/@\30_ y
2 1 A+ 2) % % _ %1
12 2 e 22 % %2 _
0 3 3i—A 2} 9% g% (5(3.2%,\) %
Table 2.
the change of variables z +— w becomes
(8) z=w e+ St G + e

The inverse change of variable is given by the expression

930 3 hot 5 g1z, dos  _3 .
14 =z—— — — - 0] .

M) o=z 2 T Taawy” oD

Like in the case of Lemma 2, due to the fact the component of (3) along e, is the complex conjugate
of the component of (3) along e;, we wrote no longer the complex conjugate of (13) and (14).

Therefore, by differentiating (14), we have

. g30 2 21 L 2= 912
2 2
w 12/\3 5 —— (2237 + 2°2) — T2 (227 + 2222) —
Jo3 22 4
——3 0
6Gr ) 2T Ol
= e (T B0y (B - 5}; Sz M2
5 1 2 21 21 n
go3 5\903 _3 4
—_ - 0
< 6 2Bx—N) ) +O(=l")
go3 3 g1 22+ A A 3
= _ g0 21 h — Lgga? — — 2
2= 197 + < 2 2 21 ) 2°2 1912527 = 6(3h — )\)9032‘ +
(15) +0(|2|").
Substituting (13) in (15) we obtain
2X + A
(16) = \w+ [% - ; hm] w?w + O(|2[*).
In order to obtain a transformation that is smoothly dependent on a, set ho; = 0 which results in
= 921 1y fact, in the normal form theory, in (13) the term containing hs; is considered any longer.
X X
(Indeed, formally, by the homological equation we would have hoy = % = 31’1) O
21,1

Remark 8. The remaining cubic w>iw-term is a resonant term. As expected, its coefficient is the same
as the coefficient of the cubic term 2% in the original equation.
The other resonant therm occurs in the equation complex conjugate to (12).
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We now combine the two previous lemmas to obtain, in a similar way,

Lemma 9 ( Poincaré normal form for the Hopf bifurcation). [3] For all sufficiently small |a|, be an
invertible parameter dependent change of variables, smoothly depending on the parameter,

h h h h h
z:w+%w2+h11ww+%u_}2++ﬁw3+£ 25 + —2wp? +

@u—ﬁ
6 2 2 ’

the equation

(17)  2=Xz+ Z kizkzl +0(|z]Y),

1!
2<k+1<3

where A = AMa) = p(a) + iw(a), p(0) = 0,w(0) = wg > 0, and g;; = gij(a), can be transformed into an
equation with only one cubic term

(18) = dw + cw’@ + O(jw|*),

where

92091122+ X) | Jgui]? |902]* 921
19 = = _ el
19 a=al@ 2INF Y Taaa-n 2

Let us now come back to the real state functions. We have w = y; + iys, hence w = 9; + iys, such
that 18) reads

U +ige = (p4iw)(yr +iye) + (Re ey +ilm ¢)(y? + 2iy1y2 — y3) (y1 — iy2)
= (uy1 —wy2 + yfRe c + ylnge ] — y%ygfm 1 — ygfm 1)
+i(wyr + pys + y3y2Re ¢ + y3Re ¢ + 2 Im i + yrysIm ci),

or equivalently,

41 pyr — wyz + (y5 + y3) 1 Re 1 — yaIm ci],

Yo = wyi +pys + (i +y3)[y2Re 1 +yiIm e,
or, finally,

e ()= (4 ) (1) + ez {m@ (1) +ni ()} o).

Conclusion 10. The coefficients ai and by in the complex normal form (18) are related to the coeffi-
cients of the real normal form (20) by the relations a; = Re ¢; and by = Im ¢,. However, in spite of
their label of normal forms, the equations (and the corresponding vector fields) (18) and (20) are not
the simplest in their equivalence class. Indeed, the question is about the dependence on « through the
coefficients, and not about the dependence on z because all the nonresonant terms were removed. So far
no assumption about the sign of c¢1(a) was made. Moreover, ¢ (a) can vanish. For the Hopf bifurcation
we are interested in the case of constant sign for ci(a). In addition, we want to obtain the true normal
form depending on a single new parameter and this parameter occurs as a coefficient. In [3] a method
to obtain this true normal form is presented. In fact, this true normal form is the versal unfolding of
(2) or (3), i.e. of the normal form of the singularity.

Lemma 11. [3] Let equation (18) be written as

1) % = (u(0) + iw(a)w + e (@ulul? + O(ul?),

where (H1) p(0) =0 and (Ha) w(0) = we > 0. If (Hs) (di—g(O) = u1'(0) # 0 and (H4) Reci1(0) # 0, then

(20) can be transformed by a parameter dependent linear function transformation, a time rescaling, and
a nonlinear time reparametrization into an equation of the form

(22) cdl_z = (B + i)u + sulul? +O(|u|4),
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where u is a new complex state function and 0 and B are the new time and parameter respectively, and
s = sign Re ¢1(0) = %1.

Therefore the dynamical systems corresponding to (21) and (22) are topologically aquivalent.
Letting w = uy + iusq, the real form of the (22) reads

@ () =(7 5 ()= (i) + ot

The coefficient ¢; (@) of the resonant term in (21) is called the first complex Liapunov coefficient. In
proving Lemma 5, some intermediate real normal form of (21) occurs. Its coefficients are expressed in
terms of the new parameter
_ p(e) c1(a(B)) .
B =pBa) = and of dy(8) = ——=5=, e1(B) = Im di(B), Li(B) = Re di(B) — Bexr(B). Since
w(a) w(a(B))

l1(p) is the coefficient of the resonant term in this form, it is called the first real Liapunov coefficient.

Theorem 12. [3] Assume that for all sufficiently small || the two-dimensional system (5) with smooth
f has the equilibrium x = 0 with the corresponding eigenvalues A1 2(a) = p(a) £ iw(e), where (Hy)
and (H2) hold. If the nondegeneracy conditions (Hs) and (Hy4) are satisfied then there are invertible
changes of functions and parameter and a time reparametrization transforming (5) into (23).

Condition (Hy) reads, equivalently, as I1(0) # 0.

Theorem 13. [3](Topological normal form for the Hopf bifurcation) Any generic two-dimensional
system (5) having at |a| = 0 the equilibrium x = 0 with the eigenvalues A; 2(0) = +iw(0),w(0) > 0, is
locally topologically equivalent near the origin to one the following true normal forms

e ()= (75 () = (3).

3. THE CLASSICAL HOPF BIFURCATION

One among the two simplest real normal forms for the two- dimensional Hopf bifurcations is associ-
ated with the system

i =fr—y+a@®+y?),
(25) { y=z+By+y®+y?),

where we used the notation: uw; = z si us = y. This bifurcation (i.e. this dynamical system) has for
B = 0, the equilibrium point x = 0.

The linearized system around this point reads & = fx — y, y =  + Py and it has the eigenvalues
A1,2 = B £ i. The corresponding static bifurcation diagram for (25); is given in fig.1.

[kl

=R 4

FIGURE 1

The dynamic bifurcation diagrams in the linear case and nonlinear case are represented in figs.2a
and 2b respectively.
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They show that as the decreasing parameter § crosses the critical value § = 0, a repulsive limit cycle
occurs subcriticaly (i.e. for § < 0). Simultaneously the equilibrium situated at the origin of the (x,y)
phase space becomes attractive. The limit cycle corresponds to periodic dynamics. The appearance
of periodic motions is referred to as the Hopf bifurcation phenomenon. The point (5, z,y) = (0,0,0)
is called the Hopf bifurcation point. The same name is beared by the dynamical system associated
with (25); for 8 = 0. The value 8 = 0 referred to as the Hopf bifurcation value. The singularity
(z,y) = (0,0) of the vector field defining (25); for 8 = 0 is called the Hopf singularity. The same name
is given to the vector field itself.

More generally, all dynamical system generated by (20) and having the eigenvalues u(a) + iw(a),
corresponding to equilibrium point situated at the origin, satisfying the properties in Lemma (5) are
referred to Hopf bifurcations. Indeed, by Lemma (5), they are topologically equivalent to (22) and, by
Theorem 2, they are topologically equivalent to (20). More precisely we have

Definition 14. The equilibrium x = 0 is a Hopf bifurcation point for (5) if in a neighborhood of
a = 0 the normal form of the vector field in (5) reads

Py = (M0 ) (1) kit {on (1) v (2))

Definition 15. The equilibrium x = 0 is a Hopf bifurcation point for (5) if conditions (Hy) — (Hy)
hold. The singularity is the vector field possessing a Hopf singular point for a given value of the
parameter (here o = 0) while the bifurcation refers to the dynamical scheme i.e. the unfolding of the
singularity for values of a around a = 0.

Theorem 16 (Hopf bifurcation). [2] Suppose that conditions (H3) and (H4) hold. Then there are
o > 0 and a neighborhood U of (z,y) = (0,0) such that:
(i) if o] < o and Re(c1)p'(0)ae < O the system

(26) = f(z,y,a), §=g(z,y,0),

where x,y,a € R, has exactly one limit cycle inside U;

(i) if |a] < o and Re(c1)p'(0)a > 0 the system (26) has no periodic orbits inside U.

Moreover, the limit cycle is attractive (repulsive) if Re(c1) < 0 (Re(c1) > 0), and it tends to the
equilibrium (0,0) as a — 0.

Recall that (Re(c1(0)) = a1(0). Hence so far all our reasonings concern the case a;(0) # 0. In this
case we say that the Hopf bifurcation is nondegenerated; otherwise Hopf bifurcation is degenerated.
It is interesting to mention that Theorem 3 asserts the existence of a precisely one limit cycle. In the
degenerated case, a results analogous to Theorem 3 asserts [2] the existence of exactly k limit cycles
if the real form of the Liapunov coefficients are a;(0) = a2(0) = ... = ax—1(0) = 0 and a(0) # 0.
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However, in general, this happens if several parameters exist. If a;(0) = 0, for every k > 1, then [2],
as a crosses the value a = 0, the Hopf bifurcation degenerates to a nonlinear centre, i.e. the phase
space of this dynamical system consists of closed trayectories.

Conclusion 17. The eigenvalues of the linearized system and the real parts of the Liapunov coefficients
of the normal form at the Hopf singularity determine the type of the corresponding (degenerated or
nondegenerated) Hopf bifurcation and, in particular, the number of the limit cycles.

Conclusion 18. [4] To a linear centre, a nonlinear centre, or one limit cycle or several limit cycles
can correspond.

Remark 19. Theorems asserting the existence of one or several limit cycles are important because, in
general, by other methods it is very difficult to prove the existence of periodic solutions of o.d.e.s.
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Abstract. This paper belongs to a series [1]-[10] in which we studied the magnetic
Bénard problem. In applyng the Budiansky-DiPrima method in order to determine
the neutral curve we looked for the eigenvalues of the governing eigenvalue problem
in the range of regular values for the associated secular equation. Herein for the case
of the absence of Hall currents we prove that the singular values are eigenvalues and
we determine the corresponding neutral curve. If the Hall current is present there to
singular values no eigenvalue correspond.

1. INTRODUCTION

The linear Bénard magnetic problem received considerable attention in the literature [1]-[9] (for a
list of references we recommend [9]). We treated this problem in several physical situations: without
Hall and ion-slip effects; with Hall efects; with Hall and ion-slip effects; for rigid walls; for free surfaces;
with additional effects (e.g. porosity, fluid mixture). Our methods were analytical or numerical. The
analytical methods were direct or based on series. In this last case the Budiansky-DiPrima method
was employed. In all these papers we were interested in bounds of stability or instability in the form
of criteria or neutral curves.

In this paper we analyze a problem avoided so for, namely we investigate if the excepted values
(singular for the secular equation) are eigenvalues of the governing problem. We mention that the
eigenvalues are the zeros of the secular equation and they define curves separating the stability and
instability regions in the parameter space. Among these curves, that one corresponding to lowest values
for a main parameter (e.g. Rayleigh number) is taken as neutral.

After a brief presentation of the perturbation problem (Section 2) and of the neutral curves for
regular values (Section 3), in Section 4 we treat the case when Hall currents are absent and in Section
5 the case when they are present. Only the case of the even velocity and temperature vector fields and
odd magnetic field as functions of the vertical coordinate is considered.

2. GOVERNING PROBLEM

Consider a horizontal layer of a viscous fluid bounded by free surfaces z = 0.5, subject to a vertical
constant magnetic field, characterized by the Hartmann numbers M, a vertical upwards temperature
gradient defined by the Rayleigh number R and Hall currents (characterized by Bg). Then in the
nondimensional form, the eigenvalue problem governing the linear stability of a mechanical equilibrium
of this layer to normal mode perturbations of wave number a reads

(D? — a®)K + DW — Bz DX =0,
(D? —a*)Z + M?>DX =0,
(1) (D? — a®)*W + M?>D(D? — a*)K — RE2a%0 = 0,
(D? —a®)X + DZ + fyD(D? — a®)K =0,
Zn(D* - a®)0+ W =0,

(2) W=DW=K=DX=DZ=0=0at z=40.5,

Assume that W, 0, and X are even functions of z while K and Z are odd. Here W, Z, K, X are
the components of the velocity, rotor of velocity, magnetic field, rotor of magnetic field in the vertical
direction respectively and O is the temperature. Moreover, P, and P, are Prandtl and magnetic
Prandtl numbers.
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The two-point problem (1), (2) contains six positive parameters. For physical reasons we choose R
as the eigenvalue. Therefore the eigenvalue depends on five parameters. The stability and instability
regions are separated, in the parameter space, by the curve R = Ry (a, M, i, Pp, P;) where Ry, is the
smallest eigenvalue.

In our investigations we solved problem (1), (2) by expansion in Fourier series on the total sets
{Esn_1} and {Fy,_1}, where Es, 1 = v/2cos((2n — 1)72), Fap_1 = v/2sin((2n — 1)72). Since the
expansion functions do not satisfy all boundary conditions (2) some constraints occur.

3. NATURAL CURVES FOR THE REGULAR CASE

In Fourier coefficients problem (1), (2) reads

—ApK3, = @2n—1)aW5,  + Ba(2n - N)aX5, | =
= 2V2(-1)"(as — Brau),
—ApZ8, | — M?*(2n — )7 X5, | = 2v2(-1)"asM?,

(3) A%W;nfl - M2(2n - l)ﬂ-Aannfl - ]}JD_TR(]?@;nfl =
= 2/2(=1)"(2n — V)mag M?,

A X5,y + (20— DrZ8, , — Bu(2n— DrAKS, | =

= 2/3(-1)"(2n = Dr(agfin + ).
—An 705, 1+ W31 =0,

where ag = DK°(0.5), ay = X¢(0.5), while the constraints become

(4) i [2\/§a4 — ()" (2n - 1)7TX§n_1] =0, i(—n"HKgn_l =0.

n=1 n=1
Let A, be the associate Cramer determinant for (15) and denote XS5, | = Ayp /A, and K, | =
Asp, /A, Suppose that A,, # 0. Then we have
A, = IIDJ—T:AH{(I%2 — ApHp)(Hy + B4 Ly) + M52, L2},
(5) Ay = 2V2(— )"+1P (2n — 1)7ra4[(Ra — A H,) + MQﬂ%I/P Ly,
Asn = 2v2(=1)" 2040 B An(Ra? — A3) — 2v/2(—1)" 4= as,

leading to the secular equation

AQ(Ra — A, H,) _
(6) Z An{(Ra®> — ApHy)(Hy + B34 L) + M28% L2} =0

where we used the notation L, = A,(A4, —ad?), H, = A2M?*(A, — a?).

Truncating the series (6) to the first term and assuming that Sy # 0, A, # 0 we obtained the
eigenvalue R = Ay H,a 2. Introducing the notation X,, = Ra®> — A,, H,, this eigenvalue corresponds to
X =0.

Still in the hypotheses 8y # 0, A, # 0, for the first two terms of the series (6) the secular equetion
becomes
(1) X{+Xa[M?B3Bs — Q- M*53QD =0,
where X; = Ra?~ A Hy, By = 42500 L 0 = Hy 4y~ H A, D = 245 and G,y = H,+ B4 L.
Correspondingly, there are two eigenvalues Ry = (41 H —I—Xl(l))a*2 and Re = (A1 Hy +X1(2))a*2, where
Xl(l)’(z) are the roots of (7) and X1(2) <0< Xl(l). The number of eigenvalues R increases with the
number of retained terms in (6).

From physical point of view we are interested in the neutral curve R = R(a, M) corresponding to
the smallest eigenvalue. In our cases, this curve is R = Ry(a, M). Since Xl(Q) < 0 it follows that Ry is
smaller than the value corresponding to one term, i.e. the neutral curve is that from the case of two
terms in (6).
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In order to find if the Hall currents are stabilizing or destabilizing we must compare this curve with
that from the case fg = 0. In taking Sz = 0 in (6) we obtain

AZ(Ra®> — A, H,)
8) ZAn{ Ra® — ApHy)(Hy + B3 Ln)}

or, if Ra®> — A, H, # 0,

©) ZH +[3§,L =0

This relation does not hold since every term of the series is positive. If Ra? — A, H,, = 0 then (8) in
singular. This singularity is due to the fact that in this case A,, = 0. Because (8) has no meaning, the
case Ra®> = A, H, must be treated separately.

Let us remark that in the case g = 0, A,, spitted in a product of two factors and corresponded to
the decoupling of the system (3).

4. NEUTRAL CURVES FOR THE SINGULAR CASE 8y =0, A, =0

If By = 0, the system (3) decouples in the systems
—AZ8, | — M?*(2n — )7 X5, = 2v2(-1)"aysM?,

1
(10) —A XS, + (@2n—1V)7Z8, | = 2/2(=1)"as(2n — )T,
and
— A KS, | — (2n— \)aWs,_, = 2\/§(P—1)"aﬁ,
(11) A%W26n—1 - M2(2n - l)ﬂAann—l - TT:RG/QG)gn—l =

= 2/2(=1)"(2n — V)mag M?,
_I;D_TAHGSn—l + W2en—1 =0.

Correspondingly A,, = [H,) IIDD—TT'ﬁlAn(Ra2 — Aan)] = Al -A” where A/ and A!! = H,, are the Cram-

mer determinants of these systems. From the first system it follows X5, _; = M%/_( 1)
such that the first constraint (4) becomes 2v/2as 3 [1 + M] = 0 which is not valid (be—
n=1

cause each term is positive) unless oy = 0. But, if ay = 0 it follows that X§, ; and Z3, ; = 0. Hence
in order to see if there is some eigenvalue we must study the system (11).

Thus, assume first A # 0, i.e. Ra?— A, H, # 0 for every n € N*. Then A = I;D—WAn(RaQ — A, H,),
Wy, 1 =05, 1=0K3, ;= M(_jﬂ such that the second constraint (4) becomes the relation
2206 S Al—n = 0 implying ag = 0 and, therefore, Wy, _, = 05, _, = 0. Hence R # A,,H,a™? for every
n € N* cannot be an eigenvalue. It remains to study the case R = A,, H,a~2. In this case Al =0
while A" £ 0if n # m. In the case n # m we have A!! = I;—T:An(AmHm —AHy), W§,_,=05,_,=0,
KS, | = %. In the case n = m the equations in (11) are not linearly independent. Indeed,
M2(2n — 1)w(11); — [A2 + M?(A,, — a?)](11)3 = (11)3. Therefore for n = m we consider the system

(11)1,3 the solution of which are W, _, = 22 4,,05,, _,, K3,,_, = — 2= (2m—1)705,,_, - 221700

m

S n
In this way, the constraint (4); becomes > M] + (= 1)mP (2m — 1)m0O5,,_; = 0. Taking
n=1 "

into account that Z = th% it follows that g = (—l)m“cth%P av2(2m—1)705,, . Since two
n=1
. . . 05 . 2a(—1)"*?! 2a(=1)"**!
by parts integrations yield [ shazsin(2n—1)rzdz = =“—~—ch%, it means that Z = Fan1
~0.5 =
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is the Fourier series expansion on the set {Fs,,_1} of the function “j:gz. Taking into account the value
2

of ag it follows that K°(z) = —v/25(2m — 1)703,,_, [(—1)m% +sin((2m — 1)72)

Moreover we have W¢(z) = ﬁ};—jAmOSm_l cos((2m — 1)mz) and ©°(2) = v/205,,_, cos((2m —
1)7z). Consequently for any value R = A,, H,,a~2 the system (11) has this nontrivial solution and,
therefore, this value is an eigenvalue. Of course, it should suffice the fact that ©¢(z) is not vanishing;
we gave the expressions of W¢(z) and K°(z) since they are useful if we want to know the corresponding
eigensolution. Thus the neutral curve is Ry = AjHia 2 i.e. By = (7% + a®)[(7? + a®)? + M?7%|a?
and it corresponds to the perturbations We(z) = ﬂ%w@ﬁ cos(mz), ©°(2) = /205 cos(nz), K¢(2) =

_\/ﬁljj—fﬂ@f [sin(ﬂ'z) - s's’,’l—ag

5. THE SINGULAR CASE By #0, A, =0

In this case
L?
2 2 2 m

In addition, for m = n,

(3)1M2(2m — 1)mHy, + (3)2(2m — V)aBu M2 (A, — a?) N

Hpy + Bf L
M?L 2A,,(2m — )7 M?
n B Lo 3y, (3)s + asfra’ Ap( 7721 )T —0
Hp, + B4 Lm Hp, + B4 Lm
if in equations (3) the expressions in the right-hand sides were passed in the left-hand sides. It
follows that equation (3)s; is a linear combination of (3);245 if as = 0. Therefore assume that

as = 0 Then the system (3) for n = m is consistent and the system (3)12.45 has the solutions

P e 272 Pm e 2
We _ P_mA ¢ 70 _ _p_r(Qm—l)“ezm—1BHM L5, Xe _ P2BHOs,, 1L, K¢ _
2n—1 — P, "Mm¥2m-—-1D 2n—1 — Am(HerB%Lm) ’ 2m—1 — Hm+,(-}§ILm 3 2m—1 —
-8 (2m-1)705,,_ Hnm _2v2(=1)"ag
Hp 4% L A :

For m # n formulae (5) still hold, of course for Ra? given by (12) and ey = 0. In addition,
direct computations give W, ; = 05, ; = X5, | = 75, ; = 0, while K5, , = —22Q0"0 Tpey
restriction (4); implies ©5,,_; = 0 and (4), implies ag = 0, whence the solution of (3) is trivial and,
consequently, R given by (12) is not an eigenvalue for the problem (1), (2).

n—1

6. CONCLUSIONS

The governing eigenvalue problem in perturbations was investigated in two cases in which the associ-
ated secular equation is singular. By Budiansky-DiPrima method the problem was reduced for n € N*
to an algebraic affine system in the Fourier coefficients the Cramer determinant A,, of which is singular.
The singularities are of the from R = R,,(a, M, B8y), where R,, is a function involving m € N*, and
they are the same as for the secular equation.

The Fourier coefficients were determined separately for n # m and for n = m and then we introduced
the results in the constraints. In this way we found that, in the absence of the Hall effect, R = R,,, was
an eigenvalue while in the other case when the Hall effect was present no such eigenvalues exist.
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Throughout this paper we assume that R is the set of real numbers, R = [0, 00) and I = [0, 1].

Definition 1. A mapping F : R — Rt is called a distribution function, if it is nondecreasing, left-
continuous with inf F(t) =0, and sup F(t) = 1.

In the following we denote by D the set of all distribution functions. DT = {F : F € D, F(t) = 0,
for all ¢ < 0} is the set of all distance distribution functions, that is the set of all distribution functions
associated with non-negative, one dimensional random variables. H, denotes the function

|1, i t>a;
Ha(t)_{O, if t<a.

Definition 2. Let S be a nonempty set. The pair (S,d) is called a 2-metric space if the mapping
d:S xS x5 — R satisfies the following conditions:

(My)  for any x,y € S,x # y there exists a z € S such that d(z,y,z) #0;

(My) d(z,y,z) =0, if at least two of three points xz,y,z are equal;

(M3) d(x,y,z) = d(.r,z,y) = d(y,z,x);

(My)  d(z,y,2) < d(z,y,u) + d(z,u,2) + d(u,y,2),Vz,y,z,u € S.

In recent decades an important progress has been made in the theory and applications of 2-metric
spaces [3-4], [23-24].

Definition 3. A probabilistic 2-metric space (briefly, a P-2-M space) is a triple (S,F, ), where S
is a nonempty set whose elements are the points of the space, F is a function from S x S x S into
D, F(z,y,z) will be denote by F, , . and T is a tetrahedral function such that the following conditions
are satisfied for all z,y,z,u € S :

(Py)  For each pair of distinct points x,y in S there exists a point z in S
such that Fy , . # Hy .
(P>»)  Fg,. = Hg if at least two of z,y,z are equal;
3 zy,z — Lazy = EX
(P4) Fz, 2z > T(Fac, ,u;Fz,u,zaFu, ,z)-
y y y

If (P), (P») and (P3) are satisfied then (S, F) is called a probabilistic 2-semimetric space (briefly,
a P-2-SM space).

In the study of the P-2-M space [5-9] we have deduced that the following functions 7 : DT x D+ x Dt
defined by 7(F,G,H) = 7 (F,71(G,H)), where 7 is a triangle function [2,20] enssure appropriate
properties for a probabilistic formulation of the inequality (My), called the tetrahedral inequality in
a 2-metric space. This is the reason for that we call the function 7 the tetrahedral function and the
inequality (Py) the probabilistic tetrahedral inequality.

Similarly, if 7} is a t-norm, then the function 7' : I x I x I — I defined by T'(a, b, c) = T1(a,Ti(b,c))
is a called a th-norm.



112

Now, let us consider the following inequality:
(P5)  Froys(t) > T(Foyu(th)s Fous(t2), Fuy,s(t3)) YV tita,ts €ERT b +ta +13 =1
If (S, F) is a P-2-SM space and (Ps) is satisfied, then (S, F,T) is called a P-2-M-space of Menger’s
type or simply a 2-Menger space.

Remark 4. In [1] probabilistic tetrahedral inequality in 2-Menger spaces was defined with t-norms
apparently more general. In [16] it was proved that those are, in fact, th-norms.

Proposition 5. If T is a left continuous th-norm and 17 is the tetrahedral function defined by

TT(F,G,H)(t) = . +tSlirpt <tT(F(t1),G(t2),H(t3)) th,tQ,tg,t S ]R+,

then (S,F,7) is a P-2-M space iff (S, F,T) is a 2-Menger space.
Definition 6. Let (S,F) be a P-2-SM space such that

€1,€9,€3 > 0,

Fx’y’u(sl) >1—gq,
Fm,u,z(EQ) >1 — €2,
Fu7y7z(€3) >1—e3

(Pe) = Fm’y’z(El + &9 + 63) >1-— (61 + €5 +€3).

Then (S, F) is called a probabilistic 2-metric space of Hikes’ type (briefly, H-P-2-M space) [11-13].
Topological properties of probabilistic 2-metric spaces have been studied in [5-8] and also in [1].

Proposition 7. Let (S,F,7) be a P-2-M space, where T is a continuous th-function. Then (S,F,T)
becomes a Hausdorff space in the topology T (F) induced by the family of neighbourhoods

U={U(g,A): e >0,AC S},
where A is a nonempty and finite subset of S and
Ue,A) ={z,y) € SxS:Fpya(e) >1—c,a€ A}
The connection of a H-P-2-M space and a 2-Menger space is given by:
Proposition 8. If (S, F,T) is a 2-Menger space and
(Ty) T(a,b,c) =Tn(a,b,c) = Maz{a+b+c— 2,0},
then (S,F) is a H-P-2-M space.

Proof. Assume that F, (1) > 1 — €1, Fpu:(€2) > 1 — e, Fyy,-(e3) > 1 —e3 If ( T1) holds, then
Foy-(e1+ex+e3) = Mazx{l—e1+1—e2+1—¢3,0} >1— (g1 +¢e2 +¢3) and (Fs) follows. O

Remark 9. As for th-norms T(a,b,c) = Min{a,b,c} and T'(a,b,c) = Prod(a,b,c) = a-b-c we have
Min > Ty, Prod > T,,, the conclusion of the proposition follows.

Theorem 10. Let (S,F) be a probabilistic 2-metric space and d(z,y,z) = sup{e : € € [0,1) and
Fpy:(e) <1—¢} Then :

( d(:I,‘,y,Z) <t Zﬁ Fz,y,z(t) >1- t;

D)

(D2) d is a 2-metric on S;

(D3) d is compatible for the topology T (F);
(D) (S,F) is complete iff (S,d) is complete;

(D5) if f:SxS =S and0< k<1
then the following contraction conditions are equivalent:
(CHy) t > 0,Fg44(t) >1—t implies Fry pyo(kt) > 1 — kt;
(C1) d(fz, fy,a) < kd(z,y,a).
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Proof. (D) if 1 < t, then d(z,y,2) <1<t and F, , .(t) > 0> 1—t. Suppose that d(z,y,2) < J < t.
Then F, . (t) > Fy4,6(6) >1—6 > 1—t. Conversely suppose that F, , .(t) >1—t, where 0 < ¢t < 1.
We shall show that there exists dg such that 0 < §o < ¢t and d(x,y,z) < dp < t. Let us suppose the
contrary, that is d(z,y,z) > ¢ for each § < ¢. Then Fy, .(6) < 1 — 6 for each 6 < 0. This implies
51}‘1?* Fpy-(0) =Fyy.(t) < 51}(1?7 (1—6) =1—t, that is a contradiction. Hence, there exists § > 0 such

that d(z,y,2) < 6 < t. Thus (D;) is proved.

(D5) Let x,y be two distinct points in S. Since there exists a point z in S such that F, , , # Hy, it
follows that there exists € > 0 such that F, , .(¢) = 0 with 0 < § < 1. Let us consider that 6; =1 -4
and € = min{e, 61 }. Then F, , .(e1) <6 =1—07 <1—¢y. This implies d(z,y, z) > e1 > 0. Thus (M)
follows.

(D3) Let z,y,z in S be such that « = y. Then F, , . = Hy. This means that F, , .(¢) > 1 —¢ for
each € > 0. Hence d(z,y,z) = sup{0} = 0. From (Ps), follows (M3).

Let us now show that d satisfies the tetrahedral inequality in a 2-metric spaces (My).

Suppose that d(z,y,u) < e1,d(z,u,z) < e2,d(u,y, z) < 3. Then there exists d;,7 = 1,2, 3 such that
d(z,y,u) < 01 < e1,d(z,u,2) < J2 < €2,d(u,y,2) < d3 < €3. Theorem 1 implies that Fj , .(01) >
1 - 61,Fx,u,z(52) > 1 -— 525Fu,y,z(63) > 1 — 63. From (Pe) it follows that Fm,y,z(él + 0y + 63) >
1—d(x,y,z) <01+ s+ 03 < &1 + &2 + e3. Thus the tetrahedral inequality ( My ) follows (D1) shows
that d is compatible with 7 (F) whence (My).

(Ds) Suppose that d(fz, fy,a) < kd(z,y,a) and F,,.(t) > 1 —t Then d(z,y,a) < t and
d(fz, fy,a) > kt. By (D1) we have Fy, ¢y o(kt) > 1—kt. If (C1) holds, let € > 0 be given, t = d(z,y,a) <
€. Then d(z,y,a) =t —e < t implies Fy , .(¢t) > 1 —t and, by (C1), we have Fyy ry o(kt) > 1 — kt.
Thus we have d(fz, fy,a) < kt < k(d(z,y,a) +¢) = kd(z,y,a) + ke. Since ¢ > 0 was arbitrary,
d(fz, fy,a) < kd(x,y,a) holds. d

The property (Ds) shows that the contraction condition (CH;) can be used to translate fixed point
theorems from 2-metric space to P-2-M space and conversely.

Proposition 11. Let (S, F) be a P-2-SM space. If there is a compatible complete 2-metric d on T (F)
such that d(z,y,2) <t iff Fp, .(t) > 1 —t, then (S,F) is a H-P-2-M - space.

Theorem 12. Let (S,F) be a H-P-2-M space and letf : S — S Assume that k : [0,00) —
[0,00) k(0) =0,k is strictly increasing and 1im+ k(t+¢)=k(t) . Then:
e—0

(C)  d(f(x), f(y)a) < kld(z,y,a)) iff
(CHs) t>0,F,,q(t) >1—t implies Ff(m),f(y)@(k(t)) >1—k(t).

The study of fixed points for mapping defined on probabilistic metric spaces (PM-spaces) has been
initiated by V.M.Sehgal in [22], where a type of probabilistic contraction was introduced. Another type
of probabilistic contraction has been introduced by T.L. Hieks in [10-12].

In [21] it is proved that a contraction in the Sehgal sense is not necessary a contraction in sense
Hicks and that a Hicks’ type contraction is not necessary a contraction of Sehgal’s type.

The two types of contractions have also been studied in the framework of probabilistic 2-metric
structures [8-9]. The above theorems show that Hicks’type contractions have a better connection with
the 2-metrics compatible with the topology generated by probabilistic 2-metrics.

The probabilistic distance from a point € S to a subset C' C S is the following distribution function
Fp.ca(t) =sup Fy y 4(t) for each ain S.

yel
Definition 13. A subset C' C S is said to be probabilistic proximinal if, for any x,a € S, there exists
y € C, such that F, cq(t) = F,44(t), for all t € RT. Denote by PR(S) the set of all probabilistic
proziminal subsets of S. One can easily see that CP(S) C PR(S) C CL(S) whenever (S,F,T) is a
2-Menger space under a continuous th-norm.

Let f be a set valued function defind on S into PR(S). By an orbit Oy(z) of 2 € S, generated by
f, we mean the sequence (z,),>0 for which 2o =« and z,, € f(zp—1),n > 1.
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Definition 14. A set- valued function f from S in P(X) is said to be orbitally upper semicontinuous
at the point s if, for each orbit of x, Of(z) = (zn)n>0 which converges to s, we have

(SC) Fs,f(s),a(t) > n@oo mef(mn),a(t)
for eacha € S and t € RT.

Theorem 15. Let (S,F,T) be a complete 2-Menger space under a continuous th-norm T, T > T,
and let f be a set-valued mapping of S into PR(S). If there exists a point x € S and k € [0,1) such
that the orbit Of(z) = (zn)n>0 satisfied the condition

(RC) t>0 and Fp_ z,at) >1 -t = Fp o, a(kt) > 1 -kt

for alln € N and a € S, then:
a) the sequence (z,,), > 0 converges to a points s € S;
b) the point s is a fized point of f iff f is arbitrary upper semicontinuous at s.

Remark 16. Theorem 8 can be extended without difficulty to common fized points for the family of set
valued mappings.

Remark 17. One can see that the two statements (a) and (b) of Theorem 3 are relatively independent.
The first states that the sequence Oy(x) is convergent and the second states that the limit s of the
sequence Oy (z) is a fixed point of f. Thus, the condition from (b) can enssure the existence of a fized
point of a mapping in other contraction conditions.

Corollary 18. Let (S,d) be a complete and bounded 2-metric space and let f be a mapping of S into
PR(S). If for k € (0,1) there exists x € S such that an orbit Op(x) = (xn)nen satisfies the contraction
condition

d(mny Tn41, a) < k(d(l‘n,1 y Ty a);
for anyn € N and a € S, then:

a) the sequence O¢(z) converges to a point s € S,
b) s is a fixed point of [ iff f is orbitally lower semicontinuous at s.

Proof. If we put Fy , .(t) = Ho(t — d(z,y, z)) then (S, F,min) is a complete 2- Menger space. O
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Riemann surface approach to bound and resonant states: Exotic poles and
resonant states

N. Grama, C. Grama, I. Zamfirescu

IFIN-HH, P.O.Box MG-6, Bucharest-Magurele, Romania

Abstract. An approach to bound and resonant states in scattering by a central
potential gV (r), based on the construction of the Riemann surface of the pole function
k=k(g), is presented. New classes of poles and resonant states are identified and their
properties are studied.

By using an usual potential we are looking for the possibility to generate a class of exotic resonant
states (ERS) that could be candidates for parent quasimolecular states, i.e. resonant states which
have the wave function localized in the region of the barrier, particularly stable with respect to the
dissolution into the neighboring compound nucleus resonant states. In order to do this we have to
identify all classes of resonant states and to study their properties.

The existence of different types of resonant states must be reflected in the existence of different
types of S-matrix poles. Consequently it is important to find a method to identify simultaneously all
the S-matrix poles. Let us consider the non-relativistic scattering of a charged particle by a central
potential

(1) V(T) = gVn(r) + vaar(r)a

where the short range complex nuclear potential V,, of strength g € C has a square or a Woods-Saxon
form-factor, and V,,, is a potential barrier. The dimensionless variable /R will be used instead of 7.
For the sake of simplicity the notation r, k, g and ¢ will be used for the dimensionless variables /R,
kR, (h?/2M R?)g and cR (where ¢ is the Coulomb parameter ¢ = Z; Zoe? M /h?). The S-matrix poles
are the solutions k = k;(g) of the equation

2)  Fi(g. k) =0,

where Fi4 (g, k) is the Jost function [1], [ is the orbital angular momentum, & is the wave number and g
is the potential strength, provided that F;_(g, k) # 0. The pole function k = k;(g) is a multiple-valued
function defined on the complex g-plane. The S-matrix poles distribution in the k-plane as a function of
the potential strength g has been extensively studied [2], [3], [4], [5], [6], [7] by using the pole trajectory
method: a particular path in the complex g-plane is chosen and the corresponding trajectory of the
S-matrix poles in the k-plane is determined. The pole trajectory method suffers from a poor treatment
of the multiformity of the function k¥ = k;(g): the method does not provide all S-matrix poles, some
important S-matrix poles being lost, and one can never be sure that the same pole is followed.

The global method [1] involves the construction of the Riemann surface Rs(,l) over the g-plane on

which the pole function k = k)(g) is single valued and analytic. This implies the division of the
%l) and the construction of the Riemann sheets images Eln(l) in the
k-plane. If g takes values on a given Riemann sheet Zg) the pole k = k¥ (g) belongs to the Riemann
sheet image 2’,5’) in the k-plane. The number n that labels the Riemann sheet 255) and the Riemann
sheet image Z/él) is used as a new quantum number for this pole and for the corresponding state (I, 7).
In this way, the sheet E,(f) of the Riemann surface Rs(,l) is associated to a given state with quantum
numbers (I,n). It follows a novel insight into the intrinsic nature of the quantum states.
The Riemann surface approach to bound and resonant states, based on the global method for all

S-matrix poles analysis, has several merits [2]: a) instead of analyzing an infinity of poles in the k-plane,

Riemann surface Rgl) into sheets X

the global method allows to analyze the single pole on each Riemann sheet image ziﬁ” in the k-plane.

By analyzing each Riemann sheet image E;z(l) no pole is lost; b) one associates to a given state (I,n)

of the quantum system the sheet 2,&” of the Riemann surface Rél) . This approach allows us not only

to study each state (I,n), but also to understand the transition from the state (I,n) to the state (I, m)
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FIGURE 1. a) The multiple-valued function k = k;(g) defined on the complex g-plane and
its distinct values in the k-plane. b) The Riemann surface over the complex g-plane. The
branch-points indicated by # and the branch-lines that join the sheets are shown. One can
see that if g takes a value on a sheet 255), then the function k = k;(g) takes only one value

on the image of this sheet w0,

as a result of potential strength variation. Indeed, let us suppose that g describes a closed contour
which starts from a point on the sheet Eg) and encloses the branch point joining the sheets 251”
251’3 . Then the pole passes from the sheet image 2’,5’) to the sheet image 2’,,2’), i.e. the system makes
a transition from the state (I,n) to the state (I,m), as a result of potential strength variation. Here
the states (I,n) and (I, m) can be either bound or resonant states. As a result an unified treatment of
the bound and resonant states is obtained; c) as g covers all the complex plane, for a given potential
form factor V(r) the well and the barrier with absorption or emission are treated simultaneously, which
allows a smooth transition from one case to the other. If g follows a continuous path on a given sheet

2,&”, then the corresponding pole follows a continuous path in the k-plane sheet image Zlél); d) taking

into account that on a Riemann sheet image Z/él) there is only one pole, the number n that labels the

and

sheet 25? and the sheet image E',Sl) is used as a new quantum number, with topological meaning, for
this pole and for the corresponding state (I,n); €) the global method for all S-matrix pole analysis is
stable under the potential strength variation. Indeed, one cannot create or destroy S-matrix poles by
varying the strength of the potential in the analyticity domain of the pole function k = k() (9)- The
poles can be created or destroyed only at the branch point g = 0. If g follows a path on a sheet Eg),
the corresponding pole describes a trajectory remaining on the sheet image 2’,5’) , provided that the
path does not encircle a branch point and does not cross a small region containing the point g = 0.

The analysis of the Riemann surface has been done for three shapes of the potential: i) a square well
followed by a square barrier; ii) a square or Woods-Saxon well with centrifugal barrier; iii) a square or
Woods-Saxon well with Coulomb barrier. For all mentioned potential shapes a new class of poles, with
unusual properties, has been identified.

The exotic resonant state poles and states have the following main properties:

i) instead of becoming bound or virtual state poles when the strength of the potential well increases
to infinity, the exotic poles remain in some bound regions of the k-plane, in the neighborhood of some
attractors (stable points). The number and position of these bounded regions depend on the shape
and height of the barrier. They occur only if the absorptive potential strength Zm g > 0 belongs to a
certain window (¢1 < | Zm g |< t2). Exotic poles exist only on some Riemann sheet images, depending
on the shape of the potential barrier, as illustrated in fig. 2. One can see that for a rectangular well
followed by a rectangular barrier there are exotic poles only for strong absorptive potentials. There is
an infinite number of Riemann sheet images on which there are situated exotic poles. On each Riemann
sheet image there is only one bounded region for the exotic resonant pole (fig 2a, 2b). In the case of a
rectangular or Woods-Saxon well with centrifugal barrier there are exotic poles on a finite number of
Riemann sheet images, the number of these sheet images increasing as the orbital angular momentum
[ increases. The exotic poles occur for either weak or strong absorptive potentials (fig. 2c¢, 2d). In the
case of a rectangular or Woods-Saxon well with Coulomb plus centrifugal barrier there is an infinite
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FIGURE 2. The first four sheets ¥,,, n = 1,2, 3,4 and the aggregates of their k-plane images
3! for the three shapes of the potential. In fig. 2a and 2b the sheets and the aggregate
of the sheet images for a square well followed by a square barrier are given; in fig. 2c and
2d the sheets and the aggregate of the sheet images for the potential made of a square or
Woods-Saxon well with centrifugal barrier are given; in fig. 2e and 2f the sheets and the
aggregate of the sheet images for the potential made of a square or Woods-Saxon well with
Coulomb barrier are given.

number of Riemann sheet images where the exotic poles are situated, and the exotic poles occur for
either strong or week absorption (fig. 2e, 2f);
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£ ' k=3.51-2.27i
s : g=200+20
s 40 !
200 E
o :
" well . barrier b)
s i
, : =200+20i
; =4.97 ~0.54i
1
o 1 i ] ]
0 05 1 15 2 r/R

FIGURE 3. The moduli of the wave functions of an usual resonant state (a) and of an ERS
(b) for the potential made of a square well followed by a square barrier with equal radii. The
values of the potential well depth g and the corresponding poles in the k-plane are given.

ii) the wave functions of the exotic resonant states are localized in the region of the barrier, rather
than in the region of the well; the wave functions of the exotic resonant states that correspond to
poles situated in the neighborhood of the stable points are almost completely confined to the region
of the barrier; the localization of the wave function in the case of potential (1) having the shape of a
rectangular well followed by a rectangular barrier is illustrated in fig. 3;

iii) the resonant levels for the rectangular central potential exhibit a local degeneracy with respect to
the orbital angular momentum [. Let g](lz (j =1,2,...) be the set of potential well strengths for which
there is a resonant state of angular momentum [ corresponding to a pole k situated at an attractor

ICZ(-” € Z;(l). In [2] it was demonstrated that there are three sheets belonging to three distinct Riemann

surfaces Rgl), Rélfl) and Rélﬂ) that are joined at a given value of the potential strength from the set
gyf A careful analysis of the Riemann surfaces shows that at gj(lz,
attractor ICZ(-Z) € Z;(l), the sheets 21(11—1)’ Zgl) and fo“) (I > 1), where ¢ = j 4+ i — 1 for even [ and
g = j+1i for odd I, are joined. In [1] the effect of the potential well diffuseness on the pole positions was
studied. It was shown that the attractor ICZ(-Z) is slightly shifted and that the poles in the waves (I — 1)

and (I + 1) are shifted too, provided that the diffuseness is small. Consequently, for a diffuse edge well

for which there is a pole at the
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at gjfi, for which there is a pole at the attractor }Cgl) € E;(l), the levels (I — 1,q), (1,i) and (I + 1,q),
where ¢ = j+1i — 1 for even [ and ¢ = j + i for odd [, are rather quasi-degenerate than degenerate.
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Uniform asymptotic approximation of 3-D Coulomb scattering wave
function
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Abstract. The uniform asymptotic approximation for large 1 of the exact 3-D
Coulomb scattering wave function ¥. is obtained. This approximation is deduced
by using the closed form expressions of ¥, and of its components ¥ qpw and Weqew in
terms of the Coulomb wave functions and their derivatives, obtained in the present
Letter.

1. INTRODUCTION

The regular solution ¥.(r) of the Schrédinger equation which describes the scattering by a pure
Coulomb potential acting between two charged particles has been obtained by Gordon [1]. P (r)
depends on two parabolic variables, £ = r — z and { = r + z, where z is the axis along the incident
beam, and on the Sommerfeld parameter n = Z; Zse*m/h%k. The usual separation of ¥. into two
irregular solutions ¥. = ¥; + ¥, is asymptotically satisfactory; from ¥, for r — oo the scattering
amplitude is usually derived [2]. However, in the non-asymptotic region neither ¥;, nor ¥, has a clear
physical meaning [2]. The Gordon’s solution is an important result in quantum mechanics. However,
the form of the solution is not sufficiently simple for practical applications (e.g. Coulomb excitation
[3]) and it is not suitable for the derivation of a 3-D WKB approximation or an uniform asymptotic
approximation for large n of ¥.(r).

It is well known that even for problems which have been solved exactly it often happens that only
the asymptotic approximation of the solution is sufficiently simple to be useful in practical applications.
Moreover, the asymptotic approximation stresses the functional dependence of the solution on the pa-
rameters. The most used approximation is the 3-D WKB approximation. However this approximation
fails at the caustic, because the amplitude function becomes infinite there. In order to overcome the
mentioned difficulty of the 3-D WKB approximation an uniform asymptotic approximation, valid near
and away from the caustic, is necessary.

As far as we know there is no uniform asymptotic approximation reported for the solutions of a 3-D
Schrédinger equation with repulsive Coulomb potential. An asymptotic approximation of the solution
of the 3-D Schridinger equation has been derived and applied to the case of Coulomb scattering by
Khudyakov [4](see also [5]). As stressed by Khudyakov himself, his asymptotic approximation is not
uniform on the whole range of the variables, but is valid in the neighbourhood of the caustic and at a
finite distance from the caustic. Indeed, the term which involves the derivative of the Airy function Ai'
and which becomes prominent away from the caustic [6] is not present in the asymptotic approximation
given in [4]. Rowe [7] attempted to develop a uniform asymptotic approximation for large k of ¥,
starting with the Gordon’s solution. However, in this case the turning point &, = 4n/k — 2i/k depends
on k and tends to the real & axis for large k. Due to this, the Rowe’s asymptotic approximation, valid
for small ¢, fails in the neighbourhood of the turning point. Consequently, it cannot be continued to
& — oo [8]. In other words it is not uniform. The above mentioned approximations start with the 3-D
Schrédinger wave functions, without using partial waves decomposition. Another approach to make
uniform the asymptotic approximations of the 3-D Schrédinger solution is based on the decomposition
in partial waves (see e.g. [9, 10, 11] and references cited there). However, no uniform asymptotic
approximation in the case of pure Coulomb scattering was obtained. In Section 2 we derive a simple
closed form expression of the 3-D pure Coulomb scattering wave function ¥.(r) in terms of the regular
Coulomb wave function of zero orbital angular momentum and its derivative. This allows us to split ¥,
into a Coulomb-distorted plane wave function ¥.qpw and a Coulomb-distorted outgoing wave function
Uedow. Simple closed form expressions of Weqpyw and Weqow in terms of incoming and outgoing Coulomb
wave functions respectively of zero orbital angular momentum and their derivatives are obtained too.
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The deduced expressions of ¥., Ueqpw and ¥eqow admit a physical meaning in both the asymptotic
and non-asymptotic region. In Section 3 the uniform asymptotic approximation of ¥, for large 7 is
obtained starting with the exact closed-form solution obtained in Section 2. The fact that this uniform
asymptotic approximation is deduced from the exact closed-form solution gives the possibility to check
the Ansatz introduced in the pioneering works of Kravtsov [12] and Ludwig [13] (see also [5, 6, 9, 10, 14]).

2. CLOSED FORM EXPRESSIONS FOR ¥.(r), Ucdpyw(r) AND Weqoyw(T)
The Gordons’s solution [1] ¥.(r) is

(1) We(r) = e ™2 T(1 +ip) e2FC=O | By (—in; 1; —ik€),

where 1 F} is the confluent hypergeometric function [15]. In the following we deduce the expression of
U.(r) in terms of the regular Coulomb wave function Fy(7, %kf) and its derivative. We use the relations
1.9.2 and 2.4.9 of [15]

(2) Fi(aliz) = efa e My, (),

1
(3) My 1 o(2) —gVa My (@) + V& My 4 (),
and the relation

4 My, 1(2ip) = 220 D1 +ip)[ " Fy(n, p)

(see [16]). Here M, 4(z) is the Whittaker function [15] and Fy(n, p) is the regular Coulomb wave function
of zero orbital angular momentum [16]. Taking z = ik{, a = b= —inand p = %k{ in the above relations
the following expression of ¥, is obtained from Eq. (1)

(5)  We(r) = €0 €3 [Fy(n, Lke) — iFo(n. 1ke)],

where 09 = argI'(1 + in) is the Coulomb phase shift for the orbital angular momentum I = 0. The
following comments on the closed-form expression of the solution ¥, given by Eq. (5) can be done:
i) the solution is expressed in terms of the well-known regular Coulomb wave function of zero orbital
angular momentum and its derivative; ii) the Gordon’s solution (1) is expressed in terms of the complex
valued function 1 Fy (—in; 1; —ik€), while the solution ¥. given by Eq. (5) is expressed in terms of two
real valued functions Fy and Fy; iii) the solution is sufficiently simple to allow the derivation of the 3-D
WKB and 3-D uniform asymptotic approximation for large 5, as it will be shown in Section 3.

Let us compare the expression of ¥.(r) obtained in the present paper to the well-known partial
waves decomposition of ¥, (r) [17]

o0

(6) U.(r) = k_lr Z(2l +1) it €91 Fy(n, kr) Pi(cosb),
=0

where oy = argT'(l + 1 + i) is the Coulomb phase shift. Although the wave function ¥, in Eq. (5) is
given in parabolic variables, it contains the Coulomb wave function Fy, which is characteristic to the
partial wave [ = 0, but the original variable kr is replaced by %kf.

In the following we split the regular solution ¥.(r) into two irregular solutions, representing the
incident and scattered parts of ¥.. In order to do this we express Fy in terms of the outgoing and

incoming Coulomb wave functions Héi) = Go £iF, [16] via the relation Fy = —1i (HéJ“) - Héf)). It
follows ¥, = Veqpw + Yedow, Where

1 . ke _ J—
(7) Teapw(r) = = 5 ™ ¢ [HT (0, Tke) — iHS (, 3k€)]

(8) Vedow(T)

eiro 8¢ [HI (g, Lh6) — iHST (n, S k)]



122

By introducing in Eqgs. (7) and (8) the asymptotic expansions for large p of Héi) (n,p) and of their
derivatives [18]

(9) HS g~ |14 L 2 ] titomonzpron)
0 3 P00 2p 2p 3
2
()1 o +i(p—nlog2p+0o0)
(10) Hy'(n:p) [ , £ 2/})] e ,

the following asymptotic expansions for large r, (6 # 0), are obtained

2
I\ Gi(kz+nlogke)
(11) ‘I’cdpw(l‘) o (1 + 1k§> e ’
I'(l1+1 .
(12) Yedow (I‘) — U ( + 17]) el(/w—nlog k{)

rSee k¢ T(1—in)

One can check that W¢qpw and Weqow are exact solutions of the 3-D Schrodinger equation with a
Coulomb potential. According to Egs. (11) and (12) as r — oc they behave as a distorted plane and
as a distorted outgoing wave, respectively. Consequently ¥ qpy will be called the Coulomb-distorted
plane wave function and W.qow will be called the Coulomb-distorted outgoing wave function. In the
absence of the Coulomb potential (7 = 0) from Egs. (7) and (8) we obtain Weqpy = €% and Weqoy = 0,
so that ¥, = el** as expected. We remark that both the incident and outgoing scattered waves are
distorted by logarithmic phase factors. This is a direct consequence of the long range nature of the
Coulomb potential. From Eq. (12) the Coulomb scattering amplitude can be deduced:

n PO+ inlogsin®(s
13 (0) = — inlogsin®( /2)
(13)  fe(®) 2k sin?(0/2) T(1—in) ©

3. UNIFORM ASYMPTOTIC APPROXIMATION FOR LARGE 7] OF ¥.(r)

The above obtaned closed-form expression (5) of the solution ¥.(r) allows us to reduce the problem
of the 3-D WKB approximation of ¥.(r) to the simpler problem of the 1-D WKB approximation.
Indeed, according to Eq. (5), ¥.(r) is expressed as a product of the exponential function e2*¢ and a
linear combination of the Coulomb wave function Fy(n, $k¢) and its derivative Fj(n, $k€), which are
functions of one variable p = %kf. Moreover, the WKB approximation of Fy(n, p) and Fj(n, p) are well
known [16]. The following WKB approximation of the solution ¥.(r) is obtained

(14) U, ~ % W—1/4 gloo [(Wl/Z ~-1) oSt 4 (W1/2 +1) ei52],

where W = 1 — i—’g and S, = Lk

from the Schrédinger equation (see, for example, [1] and [19]). From Eq. (14) one can see that the
WKB approximation of the 3-D Coulomb scattering wave function ¥.(r) fails at the caustic, because
the amplitude function becomes infinite there. The caustic is the paraboloid defined by the equation

&= 4# and separates the classically forbidden region (0 <éE< 4—];2) from the allowed region (f > 4—];2)

In order to overcome the mentioned difficulty of the WKB approximation, an uniform asymptotic ap-
proximation, valid near and away from the caustic, is necessary. The uniform asymptotic approximation
reduces to the WKB approximation away from the caustic and remains finite at the caustic.

By using the exact closed-form (5) of the wave function ¥, describing the above derived Coulomb
scattering we obtain an uniform asymptotic approximation for large 7, whose main advantage is the
possibility to describe the wave function over the entire space of the variables.

In order to obtain the uniform asymptotic approximation of ¥.(r) for large n the asymptotic ap-
proximations of Fy(n, p) and Fj(n, p) for large n and the unrestricted values of p will be used. Fy(n, p)

§ 4n\ 1/2
== / ( — k—g) d¢|. This result can also be obtained
4an/k
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satisfies the differential equation

&’y 2
(15) 0 + [1 p } y =0,

which has a turning point at p = 27. To the right of this turning point all solutions of Eq. (15) are
oscillatory, while to the left of this point the solutions show a monotonic behaviour. In the neighbour-
hood of p = 27 there is a transition region in which every solution changes from a monotonic to an
oscillatory behaviour. Uniform asymptotic approximation for large n of Fo(n, p) and Fj(n, p) in terms
of Airy function holds uniformly in the interval 0 < p < oo [20] and [21] (see also [8]).

With the notation

sl = { I8 e e
where
(16) fl@) = [ +)]"? —log[(1+2)"/ +2!/2], for x>0,
(17) () = [—z(1+2)]/?- %cos_l(% +1)+ g, for —1<2<0,

and z = Lgn—%l , the asymptotic approximations for large 1 of Fy(n, p) and Fj(n, p) in terms of the
Airy function, valid for 0 < p < oo, are

(18) Fo(n,p)  ~w'2 (20)'/° q(p),
(19) Fy(n,p)  ~—m2 (20)7/% G(p).
In Egs. (18), and (19) the functions ¢ and ¢ are given by

(20) ap) = [¢'@)] " A-2n)* é(2)),
(21) ip) = [&'@)]"? A'[-(20)**¢()).

The uniform asymptotic approximation of ¥.(r) for large 5 is obtained by introducing in Eq. (5)
the above asymptotic approximations of Fy(n, k£/2) and Fj(n, k£/2) for large n and 0 < ¢ < oo. For
both the classically allowed region £ > 4n/k and classically forbidden region 0 < ¢ < 4n/k one obtains

(22) W ~ —ir2(2n)0 e @8 fq(Lre) —i(2n) 1 G(4kE) ),

where ¢, and ¢ are given by Egs. (20) and (21).

Taking into account the expressions (20) and (21) for the coefficients ¢ and ¢ one can see that in
both the classically allowed region (¢ > 4n/k) and the classically forbidden region (0 < ¢ < 4n/k) the
uniform asymptotic approximation of ¥ (r) for large 7 is expressed in terms of the Airy function Ai
and its derivative (see Eq. (22) ). From Eq. (22) it follows that the wave function ¥, changes from an
oscillatory behaviour on one side of the caustic (classically allowed region) to an exponential behaviour
on the other side of the caustic (classically forbidden region).

Taking £ — oo in Eq. (22) we obtain again the Rutherford amplitude given by Eq. (13).

The uniform asymptotic approximation of the 3-D Coulomb scattering wave function ¥.(r) obtained
in the present paper was deduced from the exact closed-form solution (5), which is expressed in terms
of functions of one variable Fy(n, $k¢), Fj(n, 1k€) and e=*¢. In this way the problem of uniform
asymptotic approximation of the function of two variables ¥.(r) was reduced to the uniform asymptotic
approximation of the functions Fy(n, %kf) and F{(n, %k{), which are functions of one variable %k{.

In principle, the uniform asymptotic approximation of the 3-D Schrédinger equation solution is
derived from an initial guess (” Ansatz”) as to the form of the solution. Catastrophe theory paved the
way for a general theory of uniform asymptotics based on standard integrals [22]. However, for a given
problem, there is no general method to determine the appropriate ” Ansatz” a priori. An accurate guess
as to the form of the solution is crucial in order to avoid the occurrence of singularities in some of its
initially undetermined coefficients [6]. Kravtsov [6, 12] and Ludwig [13] have used in the case of a
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smooth convex caustic an Ansatz, which should be checked because the conditions of its applicability,
given by Groshev and Kravtsov [6, 23], are necessary, but not sufficient.

Now consider the Ansatz in the theory of wave propagation. The propagation of the wave u(r) with
wave number k in a non-homogeneous medium of refractive index n(r) is described by the reduced wave
equation

(23)  Au+Ek* n?(r) u=0.

In order to obtain an asymptotic approximation for large wave number k of the solution of this equation,
Kravtsov [6, 12] and Ludwig [13] have used in the case of a smooth convex caustic the following Ansatz

(24)  u(x) = 0 Ja(r) Ai(W(r))+%ﬂ(r) Al (w(r) |,

where the four functions a(r), 5(r), ¢(r) and w(r) are determined by introducing this form into the
reduced wave equation. Taking into account that, starting with the exact solution, we have obtained an
uniform asymptotic approximation valid at a smooth convex caustic (paraboloid), we are able to check
the Ansatz (24) in the case of Coulomb scattering. By comparing the uniform asymptotic approximation
of ¥, for large n given by Eq. (22) to the Ansatz (24) one can see that the mentioned Ansatz is valid
in both the classically forbidden region (0 < ¢ < 4n/k) as well as in the classically allowed region

(£ > dn/k).
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Abstract. In the recent past many algorithms for multiobjective optimization have
been proposed. To evaluate performances of these algorithms some measures of per-
formances are needed. Many metrics of algorithms performances have been proposed.
The existing performance metrics are briefly reviewed. Two metrics computing the
convergence towards the Pareto front and the solution diversity on the Pareto front
are proposed.
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1. INTRODUCTION

In the last years many multiobjective optimizations algorithms (MOA) have been proposed. To
compute the performances of these algorithms some measures of performance were also introduced.
Most of them are applied to the final nondominated set. It is now established that more than one metrics
are necessary to evaluate the performances of the multiobjective evolutionary algorithms. Zitzler [5]
has recently shown that for an M-objective optimization problem, at least M performance metrics
must be used.

According to Deb [1] the existing performance metrics can be classified into three classes: metrics
for convergence, metrics for diversity and metrics for both convergence and diversity.

Some of more recent and important metrics of performance are reviewed in the next section. Two
new metrics one for convergence and one for diversity are introduced in Section 3.

2. PERFORMANCE METRICS: A REVIEW
Here we classify the here measures for evolutionary algorithms performances in two major classes:

e convergence metrics — evaluate how far from the true Pareto front solutions obtained in final
population are;
e diversity metrics — evaluate scatter of solutions in the final population on the Pareto front.

Each of them is described in detail bellow.

2.1. Metrics for convergence. Many metrics for measuring the convergence of a set of nondominated
solutions towards the Pareto front have been proposed. Almost all of these metrics were constructed
in order to directly compare two sets of nondominated solutions. There are also approaches which
compare a set of nondominated solutions with a set of Pareto optimal solutions if the true Pareto front
is known.

In what follows we review some existing metrics for convergence.
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2.1.1. Metric S. The S metric has been introduced by Zitzler in [4] and improved in [5]. The S metric
measures how much of the objective space is dominated by a given nondominated set A.

Definition 1 (Size of the dominated space). Let X be set of decision vectors for the considered problem
and let A = {x1, z2,...,2:} C X be a set of t decision vectors. The function S(A) gives the volume
enclosed by the union of the polytopes p1, p2,- .., pt, where each p; is formed by the intersection of the
following hyperplanes arising out of x;, along with the azxes: for each axis in the objective space there
exist a hyperplane perpendicular to the azis and passing through the point (fi(x;), fa(zi),. .., fu(zi)).

Example 2. In the two-dimensional case, each p; represents a rectangle defined by the points (0,0)
and (f1(xz;), f2(x;)). An example for the two-dimensional case is presented in fig. 1.

A

Pareto Front
X1
| —m
N ! x
N
.
= iﬁ X7
S|

A

FIGURE 1. The metricS for the case of two objective functions and 7 decision vectors
(z1, x2, ..., z7) for a minimization problem.

2.1.2. Metric C The metric C, like the metric S, was introduced by Zitzler in [4] and improved in
[5]. Using the metric C' two sets of nondominated solutions can be compared to each other.

Definition 3 (Coverage of two sets). Let X be the set of decision vectors for the considered problem
and let A, B C X be two sets of decision vectors. The function C maps the ordered pair (A, B)
into the interval [0,1]:
{be B / Ja € A:axb}|
| B| '
Remark 4. (i) The value C(A, B) = 1 means that all decision vectors in B are dominated by A.
(i) The value C(A, B) = 0 represent the situation when none of the points in B are dominated by

c4 B) =

(i) C(A, B) is not necessary equal to 1 — C(B, A).

Example 5. There are situations when the metric C' cannot decide if an obtained front is better than
the other. Let us suppose that front 1 correspond to a set A and front 2 to a set B.

In fig. 2, the surface covered by the front 1 is equal to the surface covered by the front 2 but front
2 is closer to the Pareto optimal front than front 1. In this situation (and in other situations similar
with this) the C metric is not applicable. To eliminate this shortcoming a new metric — D metric — was
proposed.

Definition 6 (Coverage difference of two sets). Let A, B C X be two sets of decision vectors. The
size of the space dominated by A and not dominated by B (regarding the objective space) is denoted by
D(A, B) and is defined as:



127

f2 4 front 1 (setA)
aainy
11 front 2 (set B)
|- -5
T
| !
.
| .
.

P
L

g

F1GURE 2. An example when the metric C can not decide between front 1 and front
2 (the surface covered by the front 1 is equal to the surface covered by the front 2).

D(A,B) =S(A+ B) — S(B),
where S(A) is defined above.

Example 7. The metric D can be used to solve the inconvenience of Example 2. Consider the notation
n fig. 3.
By applying the metric D the followings equalities are obtained
S(A+B)=a+f+7;
S(A)=a+y;
S(B)=a+ 8.
The metric D for this example is expressed below
D(A,B) = ;
D(B,A) = 5.
From
D(A,B) < D(B,A)
it follows that the front 2 dominates the front 1.
2.2. Diversity metrics. In this section the most frequently used metric for diversity is described.
2.2.1 A diversity metric In this section we consider a metric for diversity proposed by Deb in [2].
The obtained nondominated points at each generation are projected on a suitable hiperplan. The plan
is divided into a number of small grids ((M — 1) dimensional boxes, M being the number of objectives).
The diversity metric is defined according to on whether each grid contains an obtained nondominated

point or not. The best possible result is obtained if all grids are represented with at least one point. If
some grids are not represented by a nondominated point the diversity is poor.

Remark 8. For greater number of objectives the value function will be difficult to define.

3. TWO NEW METRICS FOR CONVERGENCE AND DIVERSITY

In this section two metrics - one for evaluate the convergence to the Pareto set and the other to
determinate the spread of the solutions on the Pareto set are proposed.
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FiGure 3. Example of difference between C' metric and D metric for the considered
fronts front 1 and front 2.

3.1. New convergence metric. Assume that the Pareto front is known. Let us denote by P a set of
Pareto optimal solutions.

For each individual from the final population distance (Euclidian distance or other suitable distance)
to all points of Pis computed. The minimum distance is kept for each individual. The average of these
distances represents the measure of convergence to the Pareto front.

3.2. New diversity metric. For each individual from the final population we consider the point from
the set of Pareto optimal points P situated at the minimal distance. Several concepts of distance to a
set may be considered. Here we consider d(z, P) as being

d(z, P) = mind(z,y).
(, P) = mind(z,y)

We called each such point from Pa marked point. The total number of different marked points from
P over the size of P represents the diversity metric.

Remark 9. These two metrics have a low computational cost. These metrics can be applied to high
dimensional spaces.

4. CONCLUSIONS

Many metrics have been proposed in the last years. Most of them calculate the convergence to an
obtained set of solutions to the true Pareto front. The others measure the diversity of the obtained set
of solutions on the Pareto front. We can not say that one metric is the best. Some of these metrics are
preferred considering some aspects; the others, for the other aspects. Some of them are preferred to
the others by considering the computation complexity. For different classes of problems different types
of metrics can be preferred.
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Abstract. We prove two generalizations of the uniform Gronwall lemma that are
useful (at least) in obtaining upper bouns for various norms of solutions of several
ODEs and PDEs.

1. INTRODUCTION

In proving the existence of solutions for ordinary differential equations (ODEs) or partial differential
equations (PDEs), or in proving boundedness of solutions, the Gronwall Lemma is very often used. For
instance, if the inequality

dy

— < gy+h,

at =%
holds, where g, h, y are locally integrable real functions defined on [tg, 00), then the classical Gronwall
lemma statesthat

1) wmmquﬁawg+tme<[wm)m {5t

to

If we try to prove the boundedness of the solution, the above inequality does not give good results for
unbounded intervals of time, since the right-hand side has an exponential growth. In order to overcome
this difficulty, in [1] a uniform Gronwall lemma is proved.

In order to make the ideas more clear we remind this Lemma in the form it appears in [2].

Lemma 1 (Uniform Gronwall Lemma of Foiag and Prodi). Let g,h,y be three positive locally integrable
functions on (tg,00), with y' also locally integrable on (to, 00) and that satisfy the inequalities

dy
dt

Aﬁl@ﬁ

where r, a1, as, az are positive constants. Then

< gy+h, for t>tg,

IN

t+r t+r
ai, / h(s)ds < as, / y(s)ds < as,
t t

y(t+1) < (24 a) e, =
r

Obviously, since r is fixed, the above inequality gives a result of uniform boundedness of the solution
for any t > tg + 7.
If we start from an inequality of the form

y@SM@+/gmMﬂm+/hWM,

we can not obtain the boundedness via the above form of the Uniform Gronwall Lemma.
The aim of our paper is to prove an Integral Uniform Gronwall Lemma to cover these situations.
We also give a second generalization of the Uniform Gronwall Lemma.
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2. MAIN RESULTS
Our first result is:

Lemma 2 (Integral Uniform Gronwall Lemma). Let g,h,y be three positive locally integrable functions
on (tg,00), with y' also locally integrable on (tg,00) and that satisfy

t t

@) o0) < )+ [ g@nar+ [ W for stz
t+r t:r st+7‘

3) [ e < e [ n@ds<on [ s <a
t t t

where r, ay, as, a3z are positive constants. Then

@ < (THa)Qtae), £ to,

Proof. We write the inequality (2) in the form

v < [ () + / t 1)+ ) ab.

By using an integral form of the Gronwall Lemma (e.g. [WI1]) we infere

o < [ 1)+ )] o+

t T 1 t
—i-/ / (h(a) + T Sy(s)) g(7) exp (/ g(0)d0> dadr.
By changing ¢ by ¢+ r, we have

y(t+7r) < /SHT h(8)dl + y(s) + /SHT /ST h(a)g(T) exp </Tt+r g(0)d0> dadr+

+y(s) / " o) exp ( / o g(6)d0> ir.

Further, by taking s € [t,t + r], and by using the inequalities (3) we obtain
y(t+71) <as+y(s) + asare® +y(s)aje.
By integrating with respect to s between ¢ and t + r the preceding inequality, we get

t—s

t+r
ry(t +r) Sra2(1+ale“1)+(1+ale‘“)/ y(s)ds
t
and therefore
a
yt+r) <ay(l1+ae™)+ (1+ ale‘“)73,

hence (4). O

The second generalization of the Foiag-Prodi Lemma is the following

Lemma 3. Let g,h be two positive locally integrable functions on (tg,00), and y : (to,o0) — R, such
that |y| and | y'| are locally integrable. Suppose that

(5) ¥

t+r t+r t+r
/ os)ds < a, / h(s)ds < as, / ly(s)| ds < as,
t t t

where r, a1, as, az are positive constants. Then

6 lyt+n) < (2 +a) Q+ae), t>to

IN

g|y|+ha fOT tZtO;
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Proof. We have successively

t
ly@] = ly(s)l| < ly(t) —y(s)| < / y'(r)dr
S
By integrating (5) between s and ¢ the inequality
t t t
[ welar < [ g@ w@ldr+ [ s

is obtained, and thus the inequality

ly(®)] < Iy(8)|+/ 9(7) Iy(T)IdT+/ h(r)dr

is obtained.
With the previous lemma, (6) follows.

< / W) d.
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problem
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Abstract. The problem we consider describes pattern formation in the Bénard con-
vection. For this problem, in [7], [8], [5] the existence of the global attractor and that
of an inertial manifold were proved. In the present paper we prove the existence of
an inertial set and give an upper bound for its fractal dimension.

1. INTRODUCTION

In the qualitative theory of dissipative dynamical systems, the large time behavior asks for the study
of global attractors. Since generally the global attractor is a complicated set in an infinite dimensional
function space, the notion of inertial manifold was imposed [3]. This is a finite dimensional, Lipschitz
manifold, positive invariant to the dynamical system, that exponentially attracts all the orbits. The
positive invariance of the inertial manifold allows us to reduce the study of the infinite dimensional
dynamical system to the study of the finite dimensional problem, called the inertial form.

In [2] the inertial set (also called exponential attractor) is defined as a subset (not necessarily a
manifold) of the space phase that contains the global attractor, is positively invariant, has finite fractal
dimension and exponentially attracts the orbits starting from a compact connected invariant set in the
phase space. In the same work a theorem of existence of the inertial set is proved for a large class of
problems.

It was shown that for many problems the fractal dimension of the inertial set is less than the
dimension of the inertial manifold [2]. In addition, a theoretical frame for constructing a finite dynamical
system that is a restriction of the given dynamical system obtained by means of the inertial set is settled.

In our paper we consider a problem following from a model of pattern formation in Bénard convection,
studied by us in [5], [6], [7], [8]- In these papers we proved the existence of solutions for zero boundary
conditions and for periodic boundary conditions. We also proved the existence of the global attractor,
that of an inertial manifold and constructed a family of approximate inertial manifolds for it.

Like in [5], here we consider periodic boundary conditions. The existence of the inertial set is a

straightforward consequence of a theorem from [2]. After checking its hypotheses for our problem, we
give an explicit upper bound for the fractal dimension of this inertial set.
2. THE FORMULATION OF THE PROBLEM
Let us consider the equation:
ou 1 2
(1) E+ l—4AAu+ l—QAu+2u+g(u) = 0,
u = u(t,z), r€Q

where Q = (—1,1) x (—1,1), and g(u) = u®+ Bu? — (R+ 1)u. It models the pattern formation in Bénard
convection [4], [10]. With (1) we associate the initial condition

(2) u(z,0) = uo(x), ug € L2,,.(Q)

per

and as boundary conditions we consider periodic boundary conditions.

Let H = L2.,.(Q) = {u€e H*(Q), Youlp, = Youly, , T'1,T2 opposite edges of Q} with the usual
scalar product and norm denoted ( , ) respectively | |,. Let
V= Hf}er(ﬂ) = {u € H*(Q), Yjulp, = (=1) Yjulp, » T'1,T2 opposite edges of 2, j = 0_,__2}
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with the scalar product: ((u,v)) = [, Au- Avdz + [, uvdz and the induced norm denoted | |,. In
the above, y; are the trace operators of order j.

We have V C ‘H C V' the first embedding being compact. Let Au = AAu + 2Au + 2u, D(A) =
H: (Q).

per

Consider the space D(Az) with the norm |ju|| = ‘A%u‘ . Let us remark that
0

1 1 2 2
() min{gr s Hul < |Abu| < max{=,3) jul},
and thus, the norms || || and | |, being equivalent, the spaces V and D(A2) coincide.

With the same reasonings as those used in the paper [8], with minimal changes due to the use of the
periodic space we prove the existence and uniqueness of the solution (1) (the Galerkin- Faedo method)
(as we pointed out in [5]). More precisely we have the following result.

Proposition 1. For every ug € H, the problem (1)-(2) has a unique solution u in C(0,T; H* (Q) N
H2,.(Q)). The equation (1) is satisfied in the sense of the equality in L*(Q). The solution continuously

per

depends on ug.

In the following we use the inequality

(4) /Q“%le < K fuly™ ful}

which relies upon the embedding HJJ;l(Q) — L?(Q) and on the interpolation inequality [1]

i*l =1
[ulizs <ulg” |ul,™ .
J
With the same method as in [8], we prove the existence of an absorbing ball in #, having radius
po = 4/C1, where C; has the property su* — C1 < g(u)u. We can prove that C; = (8% + R+ 1)? is
convenient.
We also prove as in [8], the existence of an absorbing ball in V of radius

1
4R+1)%p31°
p1:4 Cl+ 801+p3+% 65
with 6 = 6 + 21*p3 (Kgp% + KQ,BQ) .
We aim to prove the existence of an inertial set for the above problem and use a form of the theorem
proved in [2]. Let us settle the theoretical framework in which this theorem is proved.

3. THEORETICAL FRAMEWORK |[2]

Let H be a separable Hilbert space and let A : D(A) C H — H, be a linear self-adjoint positive
operator, having a compact inverse. Consider the problem
d
(5) d—;‘+Au+R(u) = 0
u(0) = wg
where R : D(A) — H is locally Lipschitz from D(A%) into H.

The problem (5) is supposed to have a unique solution wu(.,ug) : RY — D(A) for any ug € H
and, thus, a semigroup of operators {S(t)},, may be defined. It is also assumed that the operators
S(t) : H — D(A) are continuous for every ¢ > 0 and that there is an absorbing ball for {S(t)},-, in H
having radius pp and also an absorbing ball in V' having radius p; . B

Let X be a set in D(A2), that is compact in H, connected and positively invariant to {5(t)}>0-

Denote by ¢¢ the Lipschitz constant of R on X, i.e. -

[B(w) = Ro)l, < co |4 (w=v)|

for every u,v € X.
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In this framework let us recall the definition of an inertial set.

A compact set M C H is an inertial set for {S(t)},~, if:

- the global attractor A is contained in M; -

- M is positively invariant to {S(t)},~0;

- M has a finite fractal dimension;

- dag, a1 > 0 such that for all t> 0, dist(S(t)X, M) < agexp(—ayt).

We use the following result which is a particular form (8 = 1, 8, = 5 with the notations of [2]) of

1
the theorem that asserts the existence of the inertial set.

Theorem 2. [2] In the above hypotheses, the semi-dynamical system {S(t)},, possesses an inertial
set M with fractal dimension dp(M),

2In7
<
dr(M) < Ny + 1
where Ng is such that
ANot1 > 4cg(3In2 + 1),

where An,+1 is the No + 1" eigenvalue in the increasing sequence of eigenvalues of A.

4. THE EXISTENCE OF THE INERTIAL SET

The hypotheses on the linear operator A are obviously satisfied.

The fact that g is Lipschitz from D(A?) into H was proved in [5], hence the existence of the inertial
set is proved. However, here we perform the detailed computation in order to find the Lipschitz constant,
co. We define the set X = {u € H| |u|, < p1 }. It is compact in H since the embedding of V in # is
compact. Below we consider u, v € X. We have

(6) l9(u) = g(v)[q /Q [u? + Bu® — (R+1)u—v* — Bv® + (R+ )] ” do

IN

3/ (u—v)? (u2+uv+v2)2d$+3ﬂ2/ (u—v)* (u+v)’de +
Q Q

+3(R+1)2 /Q (u — v)? da.

For the first integral, by using (4) for j = 2, we obtain

/Q(u—v)z(u2+uv+v2)2da: < [/Q(u—v)“dazr [/Q(u2+uv+v2)4da:}

1 3 r 9
K; |u—'u|§ |u—'u|2; 7 [/Q (u® +0®) d:v]

=

N

IN

Since u € X, inequality (4) for j = 4 implies
[ e < Kauly il < Kk,
and thus
/Q(u— v)? (u? +uv+v2)2da¢ < 9K§K§p‘11 |u—fu|§.

For the second integral in (6), again with (4) for j = 2, we have
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/Q(u—v)Q(uﬂ)?dx < [/Q(u—v)‘*dxr [/Q(uﬂ)‘*dx]%

1 3 1
K2 |u—v|g |u—n|3 [8/ (u4+v4)dx]
Q

ARy} fu — ;.

A

2

IN

IN

Finally, we obtain

=

1 1
l9(u) — g()], < [27K; KZp +12Kop2 32 + 3(R + 1)2] u—l,,

and by means of inequality (3), we find that

1
2

11 11 7
co = [min{@, 5}] [27K; K?p* +12K,02% + 3(R + 1)2] °

. 2
The eigenvalues of the operator A are \;; = [M — 1} + 1 and, with the help of a method

used in [9] for the eigenvalues of the Laplace operator, we find that

372 (N 2
AN>—(——-1] =3
M=y <4 > ’
where 0 < \; < Ay < ... <\, < ... is the ordered sequence of eigenvalues of A.
In order to find an upper bound for the fractal dimension of the inertial set we impose the condition

372 (N 2

(= - — 3> 4c? .
(7) o <4 1) 3>4c2(3In2+1)
Let us define

No = [ﬁ (42(3m2+1) +3)%| +5

0 \/§7r 0 ’

where the square brackets stand for the integer part. This Ny satisfies the condition (7) and the theorem
above asserts that

dp(M) < 2In7

Sme_1 1N0+ 1.

Thus, resuming all the results, we proved the existence of the inertial set for our problem and the
following estimate for its fractal dimension:

1
11 3
21 12 2TK2 K7 p4 + 12K5p3 32 1)2
dp(M) < nt [8 4 (LS 4p1+_ fpl? +3(R+1) In8e + 3 ]+5 +1,
In6 -1 [\/gﬂ min(zz, 5) J

where po = 4V/C1, C1 = 5(8>+ R+1)?

1
A(R+1)%p

2
o1 =4y/Ci + [801 + pg + T } e, §=06+2"p} (K3p3 + K23?) .
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1. INTRODUCTION

The basic equation to study the infiltration of water in unsaturated porous media is Richards’
equation. This equation is derived from a combination of the equation of continuity and Darcy equation.
This PDE equation covers both unsaturated and saturated flow regime. The Richards’ equiation is of
nonlinear parabolic type in the unsaturated domain flow or of linear elliptic type in the saturated
domain. The Richards’ equation can be cast in several forms, according to whether the pressure,
water content or both are used as state variables. The only state variable that can be used in variable
saturated /unsaturated flow is the pressure.

The integral form of the mass balance for an arbitrary domain V'is given by

(1) (9t/ pfdzx +/ pv -nds = 0,
v )%

where p stands for the water density, # denotes the volumetric water content and v represents the
Darcy velocity. The local form of (1) reads

(2) O¢(ph) + divpv = 0.

In order to obtain a complete model of the water flow, in many applications the water content and the
velocity are given as functions of the pressure head h

v = —K(h)V(h+z)),
(3) 6 = 0(h).
Here K (h) represents the hydraulic conductivity and z denotes the co-ordinate along the vertical axis

Oz oriented upward. If p is constant, from (2) and (3) one obtains the following 6 — h form of the
Richards’ equation

4) 0¢0 + div(—Kgrad(h + 2)) = 0.

On an interface separating two media, physical considerations require the continuity of the pressure
head and the normal component of the velocity. Therefore, we have

h|— = h|+ ’
(5) ven|- = v-n|y.
In this paper we present a numerical method to solve the equation (4). The method consists in two main

steps: the space discretization and the time integration. For the space discretization of the Richards’
equation we use the finite volume method (FVM). The net is defined such that an interface between
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two different layers does not intersect its elements. On the interface, the numerical flux is defined by a
formula that reflects the continuity of the pressure head and the continuity of the normal component
of the velocity. For the time integration, we use an implicit type backward method.

2. SPACE DISCRETIZATION

Consider a layered soil as in fig. 1. Define the control volumes by V; = (2;_1/2, 2141/2) and denote
by z; the middle point of the control volume (fig. 2).

The net {z;_1/2} is defined such that any V; is entirely included into a single layer. Therefore, one
interface is located at some z;_1,,. The integral form (1) for one V; has the following expression

Zl.Jrl
© & / * 9z + via o (t) — vi1ja(t) = 0.
Zi—%
In this equation the integral is approximated by the middle point quadrature formula and the velocities
are defined by the divided differences of pressure head
(hi+1 + ziJr]) — (h, + Zz)

(7) Vit1/2 R —1i41)2 .
/ / Zit1 — Zi
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The numerical hydraulic conductivty K; /s is defined as

(8)

where z* is a point on the interface, h* is given by

*

1 1 Z*—Zi 1 Zi4+1 — %

= T 3
Kitip0 K*zipn—2zi KY zign— 2

h* = hita i + hizHl — ;
Zi4l = 2 Zitl — Zi
and K* (K7) denote the left (right) limit of the hydraulic conductivity.

We note that the numerical scheme that aproximates the space differential operator 9, (K (h)9. (h+2))
is conservative and the numerical hydraulic conductivty is given by the formula (8) which represents the
physical conditions (5). In the case of the linear elliptic equation with discontinuous coeficients it was
shown [7] that the conservativeness is a necessary condition for a numerical scheme to be convergent.
Also, for the linear case, a formula like (8) was obtained in the papers [1], [3].

We obtain the differential algebraic equations (DAE)

E0,0+ A(h)h+g(h) = 0,
9) { e - 0(h),

with A a threediagonal matrix, g vector and E diagonal matrix: E; ; = vol(V;).

3. TIME INTEGRATION

In order to obtain the numerical solution of the DAE (9) we use an implicite backward differentiation
formulae (BDF) for time discretization [2]. Let k be the order of the method, let {t,,—x, - ,tn,tny1}
be a sequence of moments of time, let At = t,11 + t,, be the time step and let {0”7'“, +++,0"} and
h"*! be the corresponding values of the water content and of the pressure head respectively. Consider
the polynomial predictor q¥ (t) which interpolates the values of the water content at the time levels
{tnfky T 7tn} given by
(10)  a”(t) =Y bi(1)" ",

1=0,k
where
t—tn
1y wm= ]I i .
J=0kg#i Tt T

The polynomial corrector q€ is determined by the conditions

q“(tns1) = 0",
(12)

Q¥ (tng1 — IAL) = qF (tpyr — IAL); 1 =1,k
Now, the pressure head h™"*! is obtained from the conditions that the time derivative of the polinomial
corrector satisfies the DAE (9)

O(h" ") — q”(tni1)

(13) E (qP(tn+1) +a ) + f(h" 1) =0,

At
where the constant a and f are given by
(14) a = 14+1/2+---4+1/k,

f(h) = A(h)h+g(h).

The nonlinear system (13) is solved iteratively. Let ¥ designate the Lh.s. of (13) and let x denote the
unknown h"*!. The iteration has the form

hoxk = Uk,

(15)
xkt = gxF 4 xk.
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The iterative matrix used here is given by
(16) @F = &EV@(X’“)(X’“) +A(xh).

Details on the iterative methods for Richards’ equation can be found, for example, in [5], [6].

4. NUMERICAL RESULTS

We present the numerical results for two types of stratified soil. In both cases the soil consists in
two different porous media, sand and clay, that alternate in five equal width layers (0.20 m thickness).
For each layer the hydraulic conductivity and water content function are given by the van Genuchten
model [4]. The pressure head assigned at the boundaries, hyoy = —2.0m, hy, = —0.5m and at the initial
time h(0,z) + z = —2.0m.

The figures represent the water content distribution (figs. 3a), 3b)) and the pressure head distribu-
tion (figs. 3c), 3d)) at two moments of time (4h and 48h).

Remark that at ¢ = 48h, in the case with the sand on the top (fig. 3a) followed by the clay (the
sand is more permeable than clay) the water content reaches the maximum along the first layer on the
bottom, while in the case of the clay (fig. 3b) followed by the sand the maximum is attained on the top.
Physicaly this means that the water is accumalating in the first case and it is draining in the second
case.
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Consider a set @ = {ay,as,...,a,}; ¢,n € N* and let C C Q" be a code of length n over the alphabet
Q. The code C is called a [n, k,d]q - code if |C| = ¢* and the minimum Hamming distance of C is
d. D.D.Joshi proved that the number |C| of code words of a [n, k, d]q - code does not exceed ¢g"~4+!
[2]. Thus, say that a [n, k,d]g - code C attains the Joshi bound if |C| = ¢" ?*!. An open question is
to describe the parameters ¢,n and d for which there exist [n, k,d]g - codes with q" " code words,
i.e. which attains the Joshi bound [1].It is known [2] that using strong orthogonal systems of finite k-
ary quasigroups, in particular, orthogonal systems of latin squares, such codes can be constructed. For
example, if Ly, = ||afj ||, & = 1,t, is an ortogonal system of latin squares, defined on a set Q = {1,2,...,q},
then

C ={(i,j, ajj, iy, . afy) € Q| i, j =T q}
isa[t+2,2,t+ 1]g - code which attains the Joshi bound [2].

Definition 1. A code C of length n over an alphabet Q) is called complete k-recursive, where 1 < k <mn,
if there exists a mapping f : Q¥ — Q, such that C consists of all code words u = (g, U1, ..., Upn_1) € Q™
satisfying the conditions

Wirk = f(Ui Wity s Uivk—1), i =0,n — k.

A complete k-recursive code C' C @, defined by a mapping f, is denoted by C(n, f).

Let C be a code of length n over an alphabet @ and 0 < iy < iy < ... < i1 < n — 1. We say that
C is a code with determining positions ig, @1, ..., ix—1 if for every cq,c1, ..., cr—1 € @ there exists exactly
one code word u = (ug, U1, ..., un—1) € C such that u;, = co,usy = €1,y Ujy_, = Cp—1-

It is known [1] that a [n,k,d]g - code C attains the Joshi bound iff every &k positions in the code
words of C' are determining. A code C' C Q™ with determining positions 0, 1, ...,k — 1 can be described
by a set of mappings f; : Q¥ — Q, i = 0,n — k — 1, called the control functions, as follows:

(1) C=u€ Qn|u= (ug,ur, .o, up—1, foluh ™), frud™), ey frrr (uh™))

Definition 2. A set of k-ary operations {Ay, A, ..., Ap}tm>1, defined on a set Q, is called a strong
orthogonal system if the system {E;, Ea, ..., Ey, Ay, Ao,
s A}, where Ei(z¥) = x;, i = 1, k, is orthogonal.
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From the definition it follows that all operations in a strong orthogonal system {41, As, ..., Ap }m>1
are quasigroup operations. Moreover, every orthogonal system of binary quasigroups is a strong or-
thogonal system. It is proved in [1] that the code (1) attains the Joshi bound iff the system of k-ary
operations {f1, fa, ..., fn—k—1} is strong orthogonal. If C'(n, f) is a complete k-recursive code then its
positions 0,1, ...,k — 1 are determining and the control functions f(9 : Q¥ — Q, i =0,n — k — 1, are
the following

FOag™) = flag™),
FO gt = flay £ O g ),

FEI g™ = Flana, £, F D (@), FED a5 )
FER gy = FE D @g ), f @g ), FE Y @), >0
The mapping (™), m € N, defined in (2), is called the m-th k-recursive derivative of the mapping
f. The 2-recursive derivatives f©, f1) . f® ¢ € N of a binary quasigroup Q(f) are quasigroup
operations iff the complete 2-recursive code C(t + 3, f) attains the Joshi bound [1]. If Q(f) is a k-ary
quasigroup where k > 3, then the last result is not true.

Denote by n(k, q) the maximum length of a [n, k, d]g-code, where |Q| = ¢ and d = n — k + 1 and
by n"(k, ¢) the maximum length of a complete k-recursive code C(n, f) which attains the Joshi bound.
Then n"(k,q) < n(k,q) and for ¢ > 3,q - a primary number, we have n"(2,q) = n(2,q) = ¢+ 1 [1].
Evaluations of the parameters n(k,q) and n"(k,q) are discussed in [1,2,4-6]. The condition n"(k,q) >t
is equivalent to the existence of a k-ary quasigroup f on a set @), |Q| = g, the first t — k — 1 k-recursive
derivative of which form a strong orthogonal system.

Definition 3. A binary quasigroup Q(-) is called recursively m-differentiable if its 2-recursive deriva-
tives fO, @ M) gre quasigroup operations.

The problem of the complete evaluation of the parameters n(k,q) and n”(k,q) is open. Denote by
N (k, ¢) the maximum number of k-ary quasigroups defined on a set (), which form a strong orthogonal
system. Then n(k,q) = N(k,q) + k. For k = 2 the number n"(2, q) is equal to the maximum natural
integer ¢ for which there exists a recursively (¢ — 3)-differentiable quasigroup on a set ) with ¢ elements.

If Q(A) is a binary quasigroup, then its conjugates are defined as follows: A= (z,y) = 2z & A(z,2) =
y, Aly) =z e Alz,y) =, (TTA) o) =2 6 Aly,2) =x, AT (2,y) = 2 Alz,2) =
y, A*(z,y) =z & A(y,z) = z for every z,y,z € Q. If the operation A is denoted by (-) then usually
the conjugates ~*A, A~! and A* are denoted by (/), (\) and (x), respectively.

Proposition 4. A binary quasigroup Q(-) is recursively 1-differentiable iff its conjugates (x) and (/)
are orthogonal.

Proof. Denote the first recursive derivative of Q(-) by (o). Then z oy = y - zy, for all z,y € @, and
Q (o) is a quasigroup iff each equation z o a = b and a oy = b has a unique solution for every a,b € Q.
Therefore, Q() is a quasigroup and zoa =b < a-za = b, then Q(o) is a quasigroup iff the equation
a oy = b has a unique solution for every a,b € Q. Thusasacy=b< y-ay =b < y\ b= ay, taking
y\b=ay=cweget: acy=>b&
(W\b=c& a-y=c)e(y-c=b& c/y=a)& (cxy=b& c/y=a)

Hence the equation ¢ oy = b has a unique solution for every a,b € @ iff the conjugates ” *” and ” /”

of the quasigroup operation (-) are orthogonal. O

Corollary 5. Fvery binary quasigroup Q(-) with the identity zy - = y - xy is a recursively 1-
differentiable quasigroup.

Note that every binary quasigroup Q(-) is orthogonal to its first recursive derivative Q(o), but Q(o)
is not always a quasigroups. On the other hand the code

0(25) = {U € Qn| U = (.’E,y,.’E 'yamoy)}
attains the Joshi bound iff Q(o) is a quasigroup.
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Proposition 6. A binary quasigroup Q(A) is recursively 1-differentiable iff the equality
T (A(y,x)), A(z,y)) = =

holds for every x,y € Q, where K(z,y) = A((T1A)"Y(x,y),2) is a quasigroup operation.

Proof. According to Mann’s theorem [3] two binary quasigroups Q(B) and Q(C) are orthogonal iff
there exists a quasigroup Q(K) such that 'K (B(z,y),C(x,y)) = =, for every =,y € Q. Taking in
the last equality B(z,y) = A(y,z) and C(z,y) =1 A(xz,y), we get K(z,y) = A("1A) Y(z,y),z), for
every x,y € Q. O

Corollary 7. FEvery finite binary quasigroup Q(-) which satisfies the identity xy - x = y - xy defines a
complete 2-recursive idempotent code of length 4 which attains the Joshi bound.

Corollary 8. n'"(2,5™) > 4, for every m € N*.

Proof. This estimation follows from Corollaries 1 and 2, using the existence of a quasigroup of order 5
(Table 1) with the identity zy - z = y - zy. O

1 2 3 4 5

1 /1 3 2 5 4

2 14 2 5 1 3

315 4 3 2 1

4 |3 5 1 4 2

512 1 4 3 5
TABLE 1

Proposition 9. A finite binary quasigroup Q(-) is recursively 2-differentiable iff
(3) 1) yay=z-zz0y=2 2) zy-(y-zy)=2z-(2-22) Sy==2
where x,y,z € Q.

Proof. The quasigroup @(-) is recursively 1-differentiable iff its first recursive derivative Q(o) is a
quasigroup. For a fixed element a € ) the following equivalences hold.

yoa=zoa&a-ya=a-z2ay =2,

aoy=aoz&y-ay==z-az.

Thus, Q(o) is a quasigroup iff (3) holds for every a,y,z € Q.

The second recursive derivative Q(V) of Q(-) is defined as follows: zVy = zy - (y - zy), =,y € Q.
For every a,b € @, if the conditions 1) and 2) hold, we have vVa = uVa < va- (a-va) = ua- (a-ua) &
va = ua < v = u. Moreover, aVv = aVu < av - (v-av) = au - (u - au) < v = u. Hence, as @ is a finite
set we get that Q(V) is a quasigroup, hence Q(-) is recursive 2-differentiable. O

Corollary 10. Every commutative binary group of odd order is recursively 1-differentiable.

Proof. Every group of odd order satisfies the condition 22 = y?> = 2 = y and consequently satisfies
(3). O

Proposition 11. For every ¢ = 0,1 or 3(mod 4),q > 3, there exists a complete 2-recursive code of
length 4 over an alphabet Q, |Q| = q, which attains the Joshi bound.
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Proof. Let F = GF(2¥), k€ N\ {0,1} and z @ y = az + ay, for all z,y € F, where a € F \ {0, —1}.
Then F(@) is a commutative quasigroup which satisfies the condition

zd(zdy) =200y =>y=2=2

Hence F(o), where z oy = y @ (z & y), for all z,y € F, is a quasigroup orthogonal to F(®) and
|F| = g = 0(mod 4). Moreover,

C4,@) ={(z,y,x@y,z0y) v,y € F}

is complete 2-recursive and attains the Joshi bound.

Let now H(-) be an abelian group of odd order. Then H(-) satisfies the condition 22 = 3> = z =y
[2]. Thus z- (22) =y (2y) = 2°2 = y?2 = 2? =y> = x =y in H(-), i.e. H(-) is orthogonal to its first
recursive derivative H (o). Hence the code

0(45) = {(.’E,y,ll? 'yaxoy)| z,Y € H}
is a complete 2-recursive code which attains the Joshi bound and |H| =1 or 3(mod 4). O

Corollary 12. n"(2,q) > 4 for every odd q, q > 3.

Proposition 13. There exist recursively 2-differentiable binary quasigroups of order q, for every odd
integer q, (¢,3) = 1.

Proof. Let Q() be a group of odd order ¢, (¢,3) = 1. Then the mapping x — 2 is a bijection [2].

For ¢ = 1(mod 3) there exists k € N : ¢ = 3k + 1, so 2° = y® = (23)k1 = (yP)rt! = 23443 =
Y3+ = 22 = 42 = 2 = y i.e. the mapping z — 2° is a bijection. Similarly, for ¢ = 2(mod 3), we get
23 =y® = r =y, i.e. the mapping z — 23 is a bijection. If Q(-) is a commutative group and Q(o) is its
first recurrent derivative: zoy = y-zy, 7,y € Q, then zoy = x-y? therefore Q(o) is an isotope of Q(-),
i.e. is a quasigroup. If Q(V) is the second recursive derivative of Q(-), then zvy = 22 - y3 and Q(V) is
an isotope of Q(-) too, i.e. is a quasigroup. Hence the group Q(-) is recursively 2-differentiable. O

Corollary 14. n"(2,q) > 5 for every odd integer q, (q,3) = 1.
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1. INTRODUCTION

In the real Banach spaces F; and E, densely embedded into a Hilbert space H, Ey C Ey C H the
general problem of branching theory

(1) F(:I,‘,S) =0, F(Z'O,O) =0, Bwo = —F;(:ITO,O)

is considered. Here the operator B, is Fredholm continuously differentiable of  and sufficiently smooth
of the small parameter € in a neighbourhood of branching point (xg;0). The operator F'(-,¢) allows the
group G, i.e.

(2) Ky F(x,e) = F(Lyx,¢)

for its representations Ly in Eq (K, in Es).

Throughout this paper it is supposed that the Lie group G = G, = G,(a), a = (a1,...,a,) is a
r-dimensional differentiable manifold subject to the following requirements [1, 2, 3].

c1). the map a — Lgy,)To, acting from a neighbourhood of the G, (a) identity element into Ej,
belongs to the class C!, such that Xz € E; for all infinitesimal operators Xu = tlgr(l) t7 [Ly(aeyu — u]

in the tangent manifold Tg’"(a) t0 Lg(a);

c2). the stationary subgroup of zy determines the representation L(Gy) of the local Lie group G5 C
G, s < r with the s-dimensional subalgebra T;( a) of infinitesimal operators. Thus, the elements
p=Xxy, X € T;(a), determine in N'(B,,) an m = r — s-dimensional subspace, i. e. the bases in
N (Bg,) and in the Lie subalgebra T;(a) can be ordered such that ¢, = @r(x0) = Xgzo, 1 < k < m
and Xgzo =0 for k >m+ 1

c3). for every X € T4 the map X : By — H is bounded in the L(E,, H)-topology.

Definition 1. F(z,¢) is an operator of potential type if in a certain neighbourhood of the branching
point (zo;0)

(3) F(z,e) = Dgradl (z,¢)

where D € L(Es) is an invertible operator. Then the functional l (x,€) is called the pseudopotential for
the potential type operator F.

The aim of this article is to generalize the results in [1, 2] to the potential type operators.

Differentiating equality (2) with respect to = at the point zo we obtain K F,(xq,e) = F,(Lyxo,€)L,,
i.e. the kernel of the Fredholm operator B,, turns out to be only G,-invariant. The analog of the
cosymmetric identity given in [1, 2] is obtained and on its base a theorem concerning possibility to
reduce the branching equation is proved. As consequences, for the case of the invariant kernel N'(B,,),
results on the branching equation (BEq) for some symmetry breaking problems are established.
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2. CosYMMETRIC IDENTITY AND BEQ REDUCTION

For our problem the BEq has the form
(4) f(&e) = QF (zo + v(e) + u(v(e),e),€), v(e) = v(zo,e) = Pz — z0) Zf, €)@i,

where @ is the projector on the direct supplement E,, = span{zi,...,2z,} of the range R(B,,) to the
operator By, [4], P is the projector on N (B,,) = span{p1,...,¢n}

Lemma 2. Let the conditions c1)-c3) be satisfied and assume that the equation (1) is of potential
type (3). Its pseudopotential is invariant relative to representation Lg(q) iff

(5) L;D'=D'K,' or DL;"'=K,D.

Proof. According to (3) and by Lagrange’s theorem
1

1
/ D 'F(bz,¢),x),, df, I(Lyz,e) / “F(Lybz,¢e), Lyz) , df.
0 0
Since Dgrad l(z,¢) = K, ' F(Ly0x,¢), then by Lagrange theorem, we have

1
:/ DK F(Lyfz,¢),x) . db.
0

Consequently the invariance of the pseudopotential I(x, €) is possible iff
1
/ ((LyD~" — D—lKg—l)F(Lgex,s),x)H df =0,

0

Corollary 3. For the potential nonlinear equation (1) we have LiK,=1.

Theorem 4. For all X € T;(a) in some neighbourhood of the branching point (xq;0) the cosymmetric
identity holds

(6) (DF (z,¢), X(z,€)))y =0, x=u1z0+v(e) +ulv(e),e).

Proof. Let be X € T;(a) and let Lg(,(;)) be one-parameter subgroup of Lg(,). According to the func-
tional I(z,e) Ly-invariance one has

0=1 (Lg(a(t))xas) =1 (:E:E) = <D_1F($55)a (Lg(a(t)) - I) > +o0 (H( () — I):EHEH) 3
where z = z¢ + v(e) + u(v(e), €). Passage to limit ¢ — 0 proves the theorem. O

Theorem 5. Under the conditions c¢1) — c3) assume that the equation (1) is of potential type, its
L,—~invariant pseudopotential belongs to the C* class in a neighbourhood of the branching point (z¢;0),
and let s be the dimension of the stationary subgroup of the element o with m =1 —s > 0.
(1) If m = n, then for all (£(e),e) (or (v(z0,€(€)),€)) belonging to some small neighbourhood of
0 € R**! the BEq (4) is identically satisfied.
(2) If m < n and n > 2, then the partial reduction of the BEq takes place: m of its equations are
linear combinations of the other (n — m) ones.

Proof. According to the cosymmetric identity and by Lyapounov—Schmidt method [4, 5] we have

0= (DF(zo +v(e) +u(v(e),e),e), Xp(xo + v(e) + u(v(e), )y =
(DQF (w0 +v(e) +u(v(e),e),€), Xi(wo +v(e) +u(v(e),e))) gy =

= 3= 1560 (D oudy + (D2 Xa(0(©) + u(0(e), ) ).



148

where the rank of the (nxm)-matrix [(Dz;, ¢x) ;] — isequal to m. The theorem is proved. O

j=1,n, k=1m
3. APPLICATION TO SYMMETRY BREAKING PROBLEMS

If the kernel NV(B,,) is Lg-invariant, i.e.Ly,)zo = %o, the cosymmetric identity (6) gives a new
approach to the problem of constructing the general form of the BEq which allows a group symmetry [6].
In the following some examples of potential and partially potential branching equations with symmetries
of rotation and hyperbolic rotation groups are given.

Theorem 6. [6] The two—dimensional analytic potential BEq with symmetry SO(2) (SH(2)) allows
2
the symmetry O(2) (H(2)). Moreover, in the real base in N'(B,,) we have v(t,e) = > 1(¢)pr and

k=1
the BEq has the form
fi(r,e) = Y ap(e) (72 £ =0,  fo(r,8) = 3 ar(e) (7 £ 72)*m = 0,
(7) k=0 k=0
X anle k+1
l(1,e) = kzo 2(21%) (rP+rd) ",

(7+7 stands for the O(2)— and 7-” for the H(2)-symmetry).

Theorem 7. The 2p-dimensional analytic BEq with symmetry of p-dimensional cube and symmetries
SO(2) (SH(2)) in the i-th pair of variables T2;—1,72; at independent group parameters for different i-s
has the form

(8) f?k—l(TaE) = T2k-1U |T|a|7-|"--v |T| 5|T|v |7-| a'--a|T|75 = Oa
E o2 k=1 1 k+1 !
for(r,e) = 1ou |7l 7], A7l |7l 7], -2 7], e ] =0,
ko2 k=1 1 k+1 1
where |7| =73, | 75, k=1,...,1. The function u is invariant relative to pairwise transpositions of
k
arguments with indexes k > 1. If % =1 <|T|, I7],. -, |T|,E> is the partial potential (pseudopotential)
12 !
of the first pair of equations on the variables 11,72, then I =1 |7|,..., |7|,|7], IT|,-.-,|7],€ ] is the
k k E—1 1 k+1 1

potential (pseudopotential) of the k-th pair and

DN (N PO ol O ol PO ol WIS B A ol PO o R o P [ S Y
1 i j l 1 j i l
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Discrete groups of W-symmetry
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Abstract. One of the essential generalizations of the classical symmetry is P-
symmetry of A.M.Zamorzaev. In the case of P-symmetry the transformations of
the qualities, attributed to the points of geometrical figure F' with discrete symme-
try group G, are combined directly with the geometrical transformations and do not
depend on the choice of points. In the case of W-symmetry the transformations of
the qualities, attributed to the points, essentially depend on the choice of points.
The discrete groups of Wy-symmetry are subgroups of left standard Cartesian wreath
product of initial group P with group G, while the discrete groups of W,-symmetry
are subgroups of the crossed standard Cartesian wreath product of group P with G.
The methods of deriving the groups of W,-symmetry and W,-symmetry demands the
generalization of homomorphisms as the natural left quasihomomorphism and, respec-
tively, as the crossed quasihomomorphism. Moreover, it requires the investigation of
some their properties.

1. INTRODUCTION

The theory of symmetry of the real crystal gives rise to new generalizations of classical symmetry:
antisymmetry, multiple antisymmetry, coloured symmetry, magnetic symmetry, cryptosymmetry etc.
One of the essential generalizations of the Shubnikov’s antisymmetry [1] and of the Belov’s colour
symmetry [2] is the P-symetry of Zamorzaev [3-5]. We discuss briefly the essence of the P-symmetry
and the P-symmetry.

Associate with each point of the geometrical figure F' with discrete symmetry group G at least one
index from the set N = {1,2,...,m} and fix a certain transitive group P of the permutations of these
indexes. The transformation of P-symmetry is defined to be an isometric mapping ¢ = gp = pg of
the “indexed” geometrical figure F(™) onto itself in which the geometrical component g operates only
on points, and the indexes are transformed by the permutation p of the group P. The set G¥) of
transformations of P-symmetry of any “indexed” geometrical figure F(N) forms a group with respect
to the operation

(1) g™ gl =g,
where g = gig; and pr = pip; [3].

The set P' = {p|g'?) € GP)} is a subgroup of the group P. When P’ = P, the group G'¥) is defined
as the group of complete P-symmetry. Identifying the groups G and P with their isomorfic injections
into G x P by the rules g — ge, where e is the unit of the group P, and p — 1p, where 1 is the unit of
the group G, we find the symmetry subgroup H = G) NG and the subgroup Q = GNP = GNP’
of P-identical transformations of the group G*). The group G¥) is called major, minor or Q-middle
ife<@Q=P =Pe=Q<P =P or e<Q < P'= P, respectively. If P’ is a non-trivial subgroup
of P, then the group G(P) is called P'-semi-major, P’-semi-minor or (P',Q)-semi-middle according to
the cases whene < Q = P,e=Q < P’ or e< Q < P’

Every such group of complete P-symmetry can be derived from the generating group G by searching
in G and P for invariant subgroups H and @ for which there is an isomorphism of factor-groups G/H
and P/@, by paired multiplication of the cosets adequate in isomorphism and by joining the obtained
products [3-5]. The cases when Q = P, Q = e and e < Q < P make possible to divide the groups into
major, minor and ()-middle ones.

In the scheme of the P-symmetry the Belov’s colour symmetry (m-symmetry) corresponds to the
cyclic group P = {(12...m)}, the Shubnikov’s antisymmetry is the 2-symmetry, the I-multiple antisym-
metry is the (2,2, ...,2)-symmetry, the Neronova-Belov’s colour antisymmetry is the (m,2)-symmetry
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etc. The P groups can be interpreted as vertices permutations at the symmetry of an oriented regular
m-gon in the case of the m-symmetry.

On the other hand, the @-symmetry techniques suggested by Koptsik [6] and his collaborators under
the influence of the Tavger-Zaitsev magnetic symmetry description [7] (in which also unlike the P-
symmetry techniques the geometric transformation component acts both on the points and on the
features bearing not scalar but vector or tensor nature) was developed in detail by the author of this
article and called a P-symmetry [8,9,5].

The transformation of P-symmetry is defined as an isometric mapping ¢(®) = pg of the “indexed”
geometrical figure FY) onto itself such that the geometrical component g operates both on points and
on indexes by the given rule which is independent of the points however the permutation p is only a
compensating permutation of indexes to map F(™) onto itself and p € P. In this case, in general, the
components p and g of the transformation g(p) do not commute: pg # gp.

The set GF) of transformations of P-symmetry of any “indexed” geometrical figure F(N) forms a
group with respect to the operation

2) gl(pi) *g;pj) _ g](cpk)’

where g1 = 9i9;, Px = Di go_g\i (p;) and gp_g\l. (pj) = gl-pjg;1 = ps € P [8]. The groups of P-symmetry
are subgroups of the right semi-direct products of the group P by group G, accompanied with homo-
morphism ¢ : G — AutP by the rule ¢(g;) :go_g\i. The set P' = {p|g'?) € G} is a subset of the
group P. Moreover, e C P’ C P. If P' C P, but P’ is not a group, then the group GP) is called a
P'-pseudo-minor or (P’, Q))-pseudo-middle, if e=Q C P’ or e< @ C P'.

2. DISCRETE GROUPS OF Wj,-SYMMETRY

Construct the Cartesian product W of isomorphic copies of the group P which are indexed by
elements of G, i.e. W = ﬁgieGPgi, where P% = P. The transformation of Wp-symmetry is by
definition an isometric mapping ¢*) = gw of the “indexed” geometrical figure F(V) onto itself in
which the geometrical component g operates only on points M, = g (M;) of the figure FY) (where
M is a fixed point of general position of the figure F' with respect to the group G), not affecting indexes,
and the indexes ascribed to the point M} are transformed by the permutation p9%, which is the “gj-
component” in w. The set of transformations of Wj-symmetry of the given “indexed” geometrical
figure F(N) forms a group G"») with the operation

8 g og" =g,
where g = gigj, wr, = wi’w; and wi’ (gs) = w;(gjgs)-

The classification of groups of W,-symmetry on types [10] is similar to the classification of groups of
P-symmetry. The groups of W,-symmetry are subgroups of the left simi-direct products of group W

with the group G, accompanied with a fixed isomorphism ¢ : G — AutW defined by the rule ¢(g9) =9,
where g: w — w9. _
Let us have groups G, P and W =[], ¢

¢ : G — AutW by the rule p(g) ZE, where §: w — w?. The mapping u of the group G onto the subset
W' of the group W defined by the rule u(g) = w is called an ezact natural left quasi-homomorphism if
for any g¢; and g; from G we have

PY%  where P9 = P, the exact isomorphic injection

1(9i95) = [1(g0)1 nlg;) = w w;j = w,
where w;,w;, w, € W' [11].

In general, the image of G through the exact natural left quasi-homomorphism p, u(G) = WrCc W
is not a group, but W/ always contains the unit wg of the group W. The kernel H of the exact natural
left quasi-homomorphism p of the group G into the group W is a subgroup in G; the index of this
subgroup coincides with the power of u(G).
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Let us consider the group G, the finite group W =[] P9 its subgroup V (V < W) and the

exact isomorphic injection ¢ of the group G into the subgroup G of the group AutW defined by the

g:i€G

rule ¢(g) =9. The mapping i of the group G onto the subset X of the set of all left cosets of group
W by its subgroup V is called a generalized ezact natural left quasi-homomorphism if for any g; and g;
from G the conditions fi(g;) = w;V and fi(g;) = w;V imply

i(9igi) = (wiV)% xw;V = wV,

where w;V,w;V,w,V € X.

The mapping i of the group G onto the subset X of the set of all left cosets of the finite group
W =1l,,ec P’ by its subgroup V' defined by the rule fi(g) = wV is a generalized exact natural left
quasi-homomorphism iff V9 = wVw=! for any g € G and wV = ji(g) [12].

Any group GW») of Wp-symmetry with the finite group W can be derived from its finite generating
group G and group W =T]] 9i€G P9  of multicomponent permutations by the following steps:

1) find in W all subgroups V' and subsets W', which are decomposed in left cosets by its subgroup
V, and in G all proper subgroups H with the index equal to the power of set of all left cosets
of W' by V and for which there is the isomorphism A of factor-groups G1/H and W;/V}
(A: G1/H — W1/Vy defined by the rule A(Hg) = wV), where G; <G, Wi < DiagW and
V1 =V ﬂDiagW S Wl;

2) construct a generalized exact natural left quasi-homomorphism ji of the group G onto the set of
all left cosets of W' by the subgroup V' defined by the rule f(Hg) = wV and which preserves
the correspondence between the elements of factor-groups G1/H and W;/V; obtained as a
result of isomorphism A;

3) combine pairwise each g’ of Hg with each w' of wV = ji(¢');

4) introduce into the set of all these pairs the operation (3) [13].

If V= wp, where wq is the unit of the group W, then the mapping fi is an ordinary exact natural
left quasi-homomorphism. In this case, the universal method of deriving the groups of W)-symmetry
becomes more simple and takes the form of method for deriving the semi-minor or pseudo-minor groups
in dependence on W', where wo C W' C W.

3. DISCRETE GROUPS OF W,-SYMMETRY

The transformation of W,-symmetry is defined to be an isometric mapping g™ = wg of the “in-
dexed” geometrical figure F(V) onto itself in which the geometrical component g operates both on
points M}, = gp (M) of the figure F(V) (where M is a point of general position of the figure F' with
respect to the group G) and on indexes by the given rule independent of the points, but the permutation
p9* (“gr-component” in w) is only a compensating permutation of indexes at the point M) to map
FM) onto itself. The set G("a) of transformations of T,-symmetry of the given “indexed” figure F(V)
forms a group with the operation

@) g gl =g,

where g, = gigj, wi = w’ 7y, (w;),w’ (95) = wi(g;9s) and 74, (w)) = giw;g;".
The groups of W,-symmetry are subgroups of the crossed semi-direct products of the group W =
11 gieGPgi with the generating group G, accompanied with two morphisms: a homomorphism 7 : G —

1

AutW defined by the rule 7(g) :TZ, where TZ (w) = gwg™', and an isomorphism ¢ : G — AutW

defined by the rule ¢(g) =9, where 9: w — w? and w9(g;) = w(ggs) [14].

Let us consider groups G, P and W = ] P9 (where P9% = P), the isomorphic injection

9:€G
¢ : G — AutW defined by the rule ¢(g) =9, where the automorphism ¢ makes the left g-translation
of the components in w € W (i.e. 9: w — w?), and also the homomorphism 7 : G — & < AwtW

(where 7(g) :77\9 and 77\9 (w) = gwg™!). The mapping a of the group G onto the subset W’ of the group
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W defined by the rule a(g) = w is called a crossed quasi-homomorphism, accompanied by exact left
translation of components and by homomorphism 7 of right conjugation, if for any g; and g; from G

a(gig;) = [a(g:)]? * 14, [a(g;)] = w’ 7y, (w)) = wy,
where w;, w;, wy € W',

We note that in the case of 73: i (where 1 is the identical automorphism of the group W for any g
from G) the crossed quasi-homomorphism « is an ordinary exact natural left quasi-homomorphism; if
w? = w for all g € G and w € a(G), then a is right quasi-homomorphism accompanied by homomor-
phism 7 of right conjugation.

Any semi-minor group G(Wa) of Wy-symmetry can be derived from its generating group G and group
W = ﬁgieGPgi, knowing the kernel H; of accompanying homomorphism 7 : G — AutW of right
conjugation, by the following steps: 1) to construct a crossed quasi-homomorphism « of the group G
onto the non-trivial subgroup W’ of W (wg < W' < W) by the rule a(g) = w; 2) to combine pairwise
each g of G with each w = a(g); 3) to introduce into the set of all these pairs the operation (4).

Let us consider the group G, the finite group W = HgieGPgi (where P9 = P), its subgroup V,

the isomorphic injection ¢ : G — AutW defined by the rule ¢(g9) =9 (where 9: w — w9) and
also the homomorphism 7 : G — AutW (where 7(g) :73 and T? (w) = gwg™!'). The mapping & of
the group G onto the subset X of the set of all right cosets of group W by its subgroup V is caled
a generalized crossed quasi-homomorphism, accompanied by the exact left translation of components
and by the homomorphism 7 of right conjugation, if for any g; and g; from G from the conditions
a(g;) = Vw; and a(g;) = Vw; it follows that

a(gig;) = (Vw9 7, (Vw;) = Vg,

where Vw;, Vw;, Vw, € X and 7; =7(gi) € ® < AutWW.

IfV = w,, the generalized crossed quasi-homomorphism @& is an ordinary crossed quasi-homomorphism.
If 73: i for any g from G, then the mapping & is a generalized exact natural left quasi-homomorphism.
Moreover, if w? = w for any g from G and w from W’'=a&(G), then & is a generalized right quasi-
homomorphism accompanied by the homomorphism 7 of right conjugation.

Any middle group GWa) of W,-symmetry with the finite group W and the subgroup V of W-
identical transformations can be derived from its finite generating group G and group W =[] P9
of multicomponent permutations by the following steps:

9:€G

1) find in W all proper G-invariant subgroups V' [15] (wg <V < W);

2) construct a generalized crossed quasi-homomorphism & of the group G onto the set of all right
cosets of the group W by the subgroup V defined by the rule a(g) = Vw;

3) combine pairwise each g of G with each w' of Vw = a(g);

4) introduce into the set of all these pairs the operation (4).

The theory of P-, P-, W,- and W -symmetry groups was elaborated and developed by Zamorzaev’s
geometrical school from Chisinau.
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Lagrangian geometrization of electrodynamics
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Abstract. One studies the Lagrange space of electrodynamics L™ = (M, L), L being
defined in (1). The Euler-Lagrange equations and the law of conservation of energy is
pointed out. The Lorentz equations (8) are used in order to determine the canonical
nonlinear connection and the canonical metrical connection of space L™, as well as to
study the Maxwell and Einstein equations of L™.

INTRODUCTION

The notion of Lagrange space, whose geometry, introduced and studied by the author, [1, 2, 3], is
defined as a pair L™ = (M, L(x,y)), where M is the configurations space and L : TM — R is a regular
Lagrangian, 7'M being the phase space.

In the present paper we apply the geometry of the Lagrange space L™ to the case of the known
Lagrangian of electrodynamics

. 2 )
L(z, i) = mevyy(2)i's) + — Ay(z)i' +U(z),
m

where m, ¢, e are known physical constants, v;;(x) is a pseudo-Riemannian metric (the gravitational
potentials), A;(z) is the electromagnetic covariant vector field (the electromagnetic potentials) and
U(z) is a potential function.

The space L™ = (M, L(x,)) is called the Lagrange space of electrodynamics. An introduction in
the geometry of these spaces may be found in the books [2, 3].

Now we emphasize the general theory of the space L™. The main geometrical object fields of the
Lagrange space of electrodynamics: canonical nonlinear connection IV, canonical N-metrical connection,
the Maxwell and Lagrange equations for electromagnetic and gravitational fields are pointed out.

1. THE LAGRANGE SPACE OF ELECTRODYNAMICS

Consider the Lagrange space L™ = (M, L(z,y)) with the fundamental function L(z,y) of electrody-
namics

(1) L(z,y) = meyi;(x)y'y? + fn—eAi(ac)yi + U(x).

The local coordinates of a point (z,y) € TM are (z',y"). The indices i, j, ... run over the set {1,2,...,n}
and the Einstein’s convention of summation is used. The number n is the dimension of differentiable
manifold M.

8’L

The metric tensor g;j(x,y) of the space L™ is g;;(z,y) = 3 5uide It is given by
Yy oy

(2) 9ij(z,y) = mev;(z).
Of course, its contravariant ¢/ is expressed by
» 1 ..
3 Uz, y) = —vY ().
3 gY@y =)
The first important result is obtained using the variational calculus for the action integral of the
Lagrangian L(z,y)
1
I(c) = / L(z,)dt.
0

We obtain the Euler-Lagrange equations

d (8L\ 9L . do
@ a(w)‘%—o’y—dt
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In order to write these equations for the Lagrangian (1), we adopt the following notations: 7;:,6 (z)
are the Christoffel symbols for the fundamental tensor g;;. They are same for 7;;(z). Also, we denote:

0A; 04,
. = e J _ v
FZ' (@) = 2m \ Qi 8a:j>
Fij(x) = g (x) Fij (x),
where Fj;(x) is the electromagnetic tensor field of the space L".
We can prove, without difficulty

()

Theorem 1. The Euler—Lagrange equations (4) have the following expression:

d*z’ , dz) dz* y d* 10U
— +7; — — =g¥ t[F} —+ -
© Gt G =0 e G+ o0
The solution curves of the differential equations (6) are called the extremal curves of the space L.
The energy of the Lagrangian L(z,y), from (1) is £, = ¢° oy L. We have

(1) Erlzy) = gi(2)y'y’ — U(a).

The scalar function g;;(z)y’y’ is the so—called absolute energy of the space L™. It is related to the
1 o

kinetic energy T'(z, %) = Egij(ac):i:’:b].

Taking into account a general result [2, 4], we have the known law of conservation:

Theorem 2. The energy £ of the Lagrange space of electrodynamics L™ is constant along every
extremal curve of L™.

Two particular cases are remarkable:

1° if the potential function U () is constant, then the Euler-Lagrange equations (6) are the Lorentz
equations of the space L":
>t ; dz? dz* ; da?
8 b IPN & Rl
( ) di2 +’y.7k($) dt dt ](.’E) dt ’
2° if the function U(z) is constant and the covector A;(z) is the gradient of a function ¢(z), then
the Euler-Lagrange equations of the space L™ are
d*z’ (@) dz? dz*
adhadl ) — 2
dit? dt dt
and the extremal curves are the geodesics of the pseudo—Riemannian space (M, ;;(z)).

+ %k

2. CANONICAL NON—LINEAR CONNECTION

The canonical non-linear connection N of the Lagrange space of electrodynamics can be obtained
from the Lorentz equations (8). Indeed, taking into account the fact that (8) determines a semispray .S

0
Ox?
with the coefficients

26" = ) (2)y'y" — F'i(a)y"
it follows [2] that the coefficients N?; of N are
(10) N =7jp(2)y* — Fi(z).

But, N can be considered as a supplementary distribution to the vertical distribution V', i.e. we
have

(11) TW(TM)=N(u)eV(u), YueTM.

S=y' == —2G"(z,y)

0
Oyt
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1)
An adapted basis to the distributions N and V is determined, locally, by (5

0
) > ) (i:17"'7n)’
where

) 0
(12) Szt Oxi

- Ni(z,y)

9
Oyd
The dual basis of ( > (dz?,8y?), (i = 1,...,n) with

dzi’ dyt
(13)  0y' =dy' + N'j(z,y)dx’.
Now, we can investigate the case when the canonical nonlinear connection NV is integrable.

Theorem 3. The canonical nonlinear connection N of the space L™ is integrable iff the pseudo—
Riemannian space R" = (M, ~;;(x)) is flat and the electromagnetic tensor F";(z) is absolutely parallel
with respect to the Levi—Civita connection 'y;k(:z:)

SNi;  6Niy

dak oz
(14)  Riy(z,y) =y"Ru'jr(x) — (F'j — Flyyy),
where Rj'ji(7) is the curvature tensor of Levi-Civita connection 7;,6( x) and F';, is the covariant

derivation of tensor F'; with respect to 74 (x). From the previous formula it follows that R’ (z,y) = 0
is equivalent to Rp’jx(x) =0, F'j; = 0. O

Proof. The tensor of integrability R;k(a:, y) = of the distribution N is given by

Now, we shall determine the canonical metrical connection CT'(N), [2, 4], of the space L".

Theorem 4. The canonical metrical connection CT(N) of the Lagrange space of electrodynamics has
the following coefficients

(15)  Lip(z.y) = vi(@), Cjplz,y) = 0.
Proof. The coefficients L; > Cjk of CT'(N) are expressed by the generalized Christoffel symbols:
Li, = 1 5 <5gsk 4 090s _ 5gjk> o= 1 s <3gsk 9gjs 3gjk> .

29 \oad T oxk  a° it =39 Oyl oyt Oy*
0 09ij
Taking into account the operators S from (12) and the fact that ag,z = 0, we get the announced
T Y
result. O

The canonical metrical connection CT'(NN) has the following torsion tensors

T]?k = S;:k = C]’:k = P]?k =0; and R;-k from (14).

Also, it has the curvature tensors
Ry ji(2), Py jr = S’ ji = 0.
Therefore, we obtain, [2, 4]:

Theorem 5. 1°. The Mazxwell equations of the Lagrange space of electrodynamics, in the classical
form, hold, i.e.
Fijik + Fjri + Fri; = 0;
2°. The FEinstein equations of the Lagrange spaces of electrodynamics, in the classical form, hold
good:
1
Rij = 5Rvij = kT

and the conservation law Tij|i = 0 is satisfied.
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Abstract. We find conditions on the complex-valued function A defined in the unit
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1. INTRODUCTION AND PRELIMINARIES
Denote by H[U] the class of holomorphic functions in the unit disc
U={z€C: |z <1}
For a € C and n € N* we let
Hla,n) = {f € H[U], f(2) =a+ anz" + an 12" +..., 2€ U}
and
Ap ={f e H[U], f(z) =z + ant12" ™ + ans22" ™+ ..., 2€ U}
with A1 = A.

In order to prove the new results we shall use the following lemma, which is a particular form of
Theorem 2.3.i [1, p. 35].

Lemma 1 (1, p. 35). Let 1) : C2 x U — C be a function which satisfies
Ry (pi,052) <0,

where p,od € R, 0 < —dsZ(1+p?), z€ U andn > 1.
If p € H[1,n] and

Ry (p(z), zp'(2);2) > 0
then
Rp(z) > 0.

2. MAIN RESULTS

Theorem 2. Leta >0, f < dso‘T"2 and let n be a positive integer. Suppose that the function A : U — C
satisfies

(1) RA(z) > —dsT.

If pe H[1,n] and
(2)  RA()P*(2) — a(zp'(2))* + 5] > 0,
then
Rp(z) > 0.
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Proof. We let ¢ : C> x U — C be defined by
(3)  v(2),20'(2);2) = A(2)p"(2) — a(2p'(2))* + B-
From (2) we have
(4) Ry (p(2),2p'(2);2) > 0, for z € U.
For 0, p € R satisfying o < —dsZ(1 + p?), hence —¢? < —ds";(l +p?)?, and z € U, by using (1) we

obtain
Ri(pio;2) = R[A()(pi)? — a0® + ] = R(—p*A(2) — ao® + ) =
—p’RA(2) — ao? + 8

2
< —PPRAG) - S-(1+p)?+6 <

2 2 2
< _PRA() O _an® o an®
< —p"RA(2) 1 5 P TR

2 2 2
an? , an?| , an

< 2 |RA o Y <o,

< 17 [[R (z) + 2} + 1 <0

By using Lemma 1 we have that Rp(z) > 0. O

Ifg= dso‘T”Q, Theorem can be rewritten as follows

Corollary 3. Let a > 0, and let n be a positive integer. Suppose that the function A : U — C satisfies
2

RA(z) > —%.
If p € H[1,n] and
R |A(2)p*(2) — a(zp'(2))* + aTnQ >0

then
Rp(z) > 0.
Ifa=2,n=1, A(z) =1+ 2z from Corollary 3 we deduce
Example 4. If p € H[1,1] then
1
R [(1+22)p%(2) — 2(2p'(2))* + 1Re 0
implies
Rp(z) > 0.
If « = ds:, n =2, A(z) = 1+ 2z from Corollary 3 we deduce
Example 5. If p € H[1,2] then
1 1
R [+ 290%) — L& () + 2| >0
implies Rp(z) > 0.
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Abstract. This paper presents a vector space structure defined on the interval (0, 1)
that can be used in the gray level image processing area.

1. INTRODUCTION

The image enhancement is an important stage in the image processing domain. Usually, a gray level
image is defined by a real and bounded function f : Q — V, where Q C R? is the image support and
V represents the gray level set. Sometimes, the images that must be processed have some suboptimal
values for luminosity and contrast. Generally, the tuning of these parameters is made by using some
gray level transform functions. One of the most known method for image enhancement is the histogram
equalisation. The gray level transform is obtained by using the accumulated histogram. A much more
flexible variant for the gray level transformation is that offered by the algebraic structures defined on
real and bounded sets. Using of classical operations of real number algebra has the inconvenient that
the obtained results can be found outside the permitted values, namely the gray level set V. In this
paper, it is presented an algebraic structure having a logarithmic behaviour and being defined on the
real and open interval V' = (0,1), which plays the role of the gray level space.

The first logarithmic image processing was made by Oppenheim [2] and Stockham [9] in the frame-
work of homomorphic filters using as gray level space the set (0,00). These are based on the multi-
plicative group structure of real and positive numbers [8]. Later, Jourlin and Pinoli [1] constructed a
new logarithmic model using the set (—oo, M) with M > 0. In the framework of their model, Jourlin
and Pinoli used the addition and the multiplication by positive scalars for image processing. The first
logarithmic model defined on a real and bounded set V = (—M, M) is that presented and used by
Patragcu and Buzuloiu in [3, 4, 5, 6, 7].

The structure of this paper is the following: Section 2 presents a vector space structure defined
on the set V = (0,1); Section 3 presents the affine transform determination for image enhancement;
Section 4 presents some experimental results and Section 5 comprises some conclusions.

2. THE FUNDAMENTALS OF THE LOGARITHMIC MODEL

The most usual mathematical model for the gray level images is the real valued function defined
on a bounded subset  C R?. Keeping in mind that the function value at a point (z,y) represents
the luminosity of that pixel or reflectancy or transparency, it becomes clear that the functions we use
are bounded ones (say, they take values in a bounded interval [0, M]). The problems appear when
processing an image: the mathematical operations on real valued functions use implicitly the algebra of
the real numbers i.e. on the whole real axis and we are faced with results that do not belong anymore
to the interval [0, M] - the only ones with physical meaning. Nevertheless this situation is generally
accepted by using the truncation for the values out of the range [0, M]. The framework used in this
paper, from this point of view, is radically different: namely, we want our set of the gray values to be a
stable set with respect to the algebraic operations that we use - addition and scalar multiplication. In
the set of gray levels V' = (0, 1) we will define the addition & and the multiplication ® by a real scalar
and then, defining a scalar product (-|-)y and a norm || ||y, we shall obtain an Euclidean space of gray
levels.
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2.1. The addition. We define the sum of two gray levels, v1qva, by
V1V
(1 —v1)(1 —v2) +v1v2
The neutral element for the addition is 8 = 0.5. Each element v € V has an opposite w = 1 — v. The
addition @ is stable, associative, and commutative. Thus, it follows that this operation induces on V'
a commutative group structure. We define the subtraction operation by
v1(1 — o)

(I —v1)va + (1 —wv2)v
Using the defined subtraction ©, we denote the opposite of v by ©v.

(1) V1 DUy =

Vo, v €V

(2) V] OV =

Vo, v €V
1

2.2. The multiplication by a scalar. We define the multiplication ® of a gray level v by a scalar A
as

o

3 AQv=—————= Y eV,VAER

3) v vd+ (1 —v)? v

The above defined operations, the addition @ and the scalar multiplication ®, induce on V' a real vector
space structure.

2.3. The fundamental isomorphism. The vector space of gray levels (V, ®, ®) is isomorphic to the
space of real numbers (R, +,-) by the function ¢ : V' — R, defined as

1 v
The isomorphism ¢ satisfies
(5) v ®v2) = p(v1) + p(v2),Yv1,02, €V
(6) p(A®v)=A-pW),YAE RV EV
The particular nature of this isomorphism induces the logarithmic character of the mathematical model.
2.4. The Euclidean space of gray levels. The scalar product of two gray levels, (-|-)v : V x V —
V' is defined with respect to the isomorphism from (4) as
() Vup,up, €V, (uiloa)y = @ (v1) - ¢ (v2)

Based on the scalar product (-|-)y the gray level space becomes an Euclidean space. The norm || - ||y :
V — [0,00) is defined via the scalar product

®)  VeeV |pllv = Vv = lp)l
3. GRAY LEVEL IMAGE ENHANCEMENT BY AFFINE TRANSFORMS

Consider these affine transforms on the images set F(Q,V), defined as follows: ¢ : F(Q,V) —
F(Q,V),

9) v =re(fern),VfeF,V),

where A\ € R,7 € V while Q C R? is the image support. This form was preferred to be used because it
shows that an image can be processed in two steps: a gray level translation with a constant value T,
which leads to a change in the image brightness, then a scalar multiplication by the factor A - leading to
a change in the image contrast. The parameters (), 7) were chosen in such a way as to get a new image
very close (from a statistical point of view) to an image with an uniform gray level distribution on the
set V = (0,1). This criterion shows the fact that the enhanced image must have its mean p,, = 0.5 and
its variance o2 = 1/12. In fact, as a result, we are doing nothing else but to approximate the nonlinear
transform yielded by the algorithm of gray level histogram equalization with an affine transform as
the one in (9). In these conditions for any image f with the mean u; and the variance a;, the affine
transform v becomes
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(1) ¥(f) = j—f @ (f & py).

In the discrete case the mean py and the variance ofc are defined by

) = B (g © @)
(z,y)€Q

(12) o= 3 %Ilf(w,y)euflli

(o g)eq card

where card(Q) is the cardinality of the support Q.

4. EXPERIMENTAL RESULT

To exemplify, two images were picked out: ”lax” in fig.1 (left), and ”landsat” in fig.4 (left). The
images are enhanced with the following affine transforms.
for image ”lax”,

(13)  1(v) = 4.62® (v 0.49)
and for image ”landsat”,
(14)  2(v) =5.31® (v©0.21)

The graphics of the affine transforms are shown in fig.2 and fig.5. The enhanced images can be seen
in fig.3 and fig.6 (left). The gray level histograms can be seen in fig.1 and fig.4 (right) for the original
images and in fig.3 and fig.6 (right) for the enhanced images.

5. CONCLUSIONS

It was presented a mathematical model for the gray level images by defining an algebraic structure on
the bounded interval (0, 1), and by introducing some basic operations (addition, scalar multiplication)
and functions (scalar product, norm). This structure, based on a logarithmic model, provides gray
level operations, which yield results that are always confined to the underlying bounded interval of
allowed values. It is proposed a fully automatic image enhancement method based on the use of an
affine transform. The parameters of the affine transform are computed by approximating the classical
histogram equalization technique. The tests show that the proposed techniques allow the automatic
correction of the illumination problems like histogram equalization. The proposed method is just
another strong argument for the rich potential of the logarithmic image processing models.
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FIGURE 1. The original image lax (left) and the histogram (right).
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Abstract. As the Internet grows at a phenomenal rate, email systems have became
a widely used electronic form of communication. Everyday, a large number of people
exchange messages in this fact and inexpensive way. With the excitement on electronic
commerce growing, the usage of email will increase more exponential.

In this paper we explore a data mining capability which involves mining techniques
in email system Internet-based for increasing security.
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1. INTRODUCTION

The rapid progress of computer and network technologies makes it easy to collect and store a large
amount of semi-structured texts such as webpages, HTML/XML archives and e-mails. These text data
can be thought of as large scale text databases, and thus it becomes important to develop an efficient
tool to discover interesting security knowledge from such text databases.

Data mining refers to process of non-trivial extraction of implicit, previously unknown, and poten-
tially useful security information from large databases.

In this paper we explore a data mining capability which involves mining techniques in email system
Internet-based for increasing security.

Solving Internet security problems greatly assist surveillance intelligence activities. For example, the
discovery of user account communities and the discovery and detection of certain community behavior
patterns can be directed to uncover certain classes of covert, clandestine or terrorist behavior performed
with Internet resources.

However, it is difficult to directly apply the data mining technologies to such text or semi-structured
data since these text databases consist of:

(i) heterogeneous and,

(ii) huge collections of

(iii) un-structured or semi-structured data.

In a broad sense, e-mail messages are semi-structured documents that possess a set of structured
fields with predefined semantics and a number of variable length free-text fields [1]. In a formal way,
such a document can be represented as fig.1.

Field 1 to Field s are structured fields and usually contain information about document, such as
authorship, date, organization, layout of the text body etc. As the major content of the document,
Field s+1 to Field s+t are variable length free-text fields, such as subject area, abstract, the body and
references. While most classification work focuses either on the structured part or the text part, we
argue that both the structured fields and the free text portion could contain important information for
increasing security in e-mail system Internet-based.

Our research goal is to devise an efficient semi-automatic tool for increasing email security, and that
supports human discovery from large e-mail databases (mailing lists). Therefore, we require a fast
pattern discovery algorithm that can work in time to respond in real time on an semi-structured data
set of total size n. To achieve this goal, we adopt the framework of optimized pattern discovery [3]
described below, and develop efficient and robust pattern discovery algorithms combining the advanced
technologies in string algorithm, computational learning theory, and data mining.
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Field 1:
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............ fields
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Field s+1 : Variable
length free-
. text filds

Field s+t :

FIGURE 1. Modeling email message.

1.1. Optimized pattern discovery in email-documents. The framework of optimized pattern dis-
covery, adopted in this paper, is originally proposed by Arimura et al. [2,3] in the field of data mining
and also known as Agnostic PAC learning in computational learning theory. In optimized pattern
discovery, a pattern discovery algorithm tries to find a pattern from a given hypothesis space that
optimizes a statistical measure function, such as classification error, information entropy, Gini indez,
and x? indez to discriminate a given target (or positive) data set from another background (negative)

data set [2].
More precisely, we define the optimized pattern discovery as follows. Suppose that we are given a
set S = {s1, ..., sm} of texts and an objective function F' : S — {0, 1}, where each s; is called an

email-document. The value of the objective function F(s;) indicates that the document s; is interesting
(positive) if F'(s;) = 1 and not interesting (negative) otherwise.

Let P be a (possibly infinite) class of patterns, where for any pattern p€ P and any string s, we
define p(s) = 1 if p matches s and p(s) = 0 otherwise.

Let S be a set of email-documents and F' be an objective function. Then, a pattern p defines a
contingency table (M1;M0;N1;N0), where N1 (resp., NO) is the number of all positive (resp., negative)
email-documents in S, and M1 (resp., M0) is the number of all positive (resp., negative) documents
s€S such that p(s) = 1.

An impurity function is any real-valued function I: [0; 1] — R such that:

(1) it takes the maximum value I(1/2);

(ii) the minimum value I(0) = I(1) = 0;

(i) is convex, i.e. I((z +y)/2) > (I(z) + I(y))/2 for every z,y € [0;1].

The followings are examples of impurity functions:

- the prediction error: I (z)= min(z, 1- x);

- the information entropy I (x) =-x log x - (1- x)log(1- z);

- the Gini index: I5(z) =2z(1- z).

Then, the evaluation function based on I over S and F is

G% y(p) = I(M1/N1)N1 + I(M0/NO)NO,

where (M1;M0;N1;N0) is the contingency table defined by the pattern p over S and F.

Now, we state the our data mining problem, called the optimal pattern discovery problem, as follows.
Let P be the class of candidate patterns and let be any impurity function.



168

1.2. Optimal Pattern Discovery Problem. Given: a set S of email-documents and an objective
function F' : S —{0,1}.

Problem: Find an optimal pattern p€ P that minimizes the cost Gé,F (p) within P.

In what follows, we consider the information entropy measure only, but not limited to it. From recent
development in learning theory, it is known that any algorithm that efficiently solves, e.g. classification
error minimization, can approximate arbitrary unknown probability distributions and thus can work
with noisy environments [3].

An intuition behind the application of the optimized pattern discovery to text mining can be ex-
plained as follows. Suppose that we are given as the target set a collection of email-documents, “irakian
war news mailing list” (over 2148 subscribers) for years of 2002-2003. We want to take a look at the
contents and find a set of topic keywords characterizing the major topics in war information arising for
years of 2002-2003.

A possible way to find such keywords or phrases is to find the keywords that frequently appear in
the target set as in classical data mining. However, this does not works in most text collections because
in a typical English text, the most frequent keywords are stopwords like “the” or “an” (Table 1 (a)).
These keywords are basic constituents of English grammars and convey no information on the contents
of the text collection. Such frequent but less informative stopwords may hide less frequent informative
keywords. The traditional information retrieval data mining technique called stopword elimination may
not work, too.

A basic idea behind our method is to use an average set of texts as the control set used for canceling
the occurrences of frequent and non-informative keywords. The control set will be a set of email-
documents randomly drawn from the whole email collection or the internet. We can easily observe that
most stopwords appear evenly in the target and the control set, while informative keywords appear
more frequently in the target set than the control set. Therefore, the optimized pattern discovery
algorithm will find those keywords or phrases that appear more frequently in the target set than the
control set by minimizing a given statistical measure such as the information entropy or the prediction
error (Table 1 (b)-(c)).

The class of patterns we consider is the class of proximity phrase association patterns [3]. By a
phrase we mean any string of tokens, which may be either letters or words, of arbitrary length.

A phrase association pattern (phrase pattern) is an expression of the form (<attack>, <irakian
military bases>; 8) which expresses that phrase <attack> first appears in a mailing list and then
phrase <irakian military bases> follows within eight words. A phrase pattern can contain arbitrary
many but bounded number of phrases as its components. If the order of the phrases in a pattern
matters as in the above example then we call it ordered and otherwise unordered. Proximity phrase
association patterns can be regarded as a generalization of association rules in transaction databases
[2] such that:

(i) each item is a phrase of arbitrary length;

(ii) items are ordered; and

(iii) a proximity constraint is introduced.

2. A FAST AND ROBUST TEXT MINING ALGORITHM FOR ORDERED PATTERNS

If the maximum number of phrases in a pattern is bounded by a constant d then the frequent
pattern problems for both unordered and ordered proximity phrase association patterns are solvable by
Enumerate-Scan algorithm [3], a modification of a naive generate-and-test algorithm, in O(n¢*?!) time
and O(n?) scans; although it is still too slow to apply real world problems.

Adopting the framework of optimized pattern discovery, we have modified and developed the efficient
Split-Merge algorithm, that finds all the optimal patterns for the class of ordered k-proximity d-phrase
association patterns for various measures including the classification error and information entropy [3,
4]. The algorithm quickly searches the hypothesis space using dynamic reconstruction of the content
index, called a suffiz array with combining several techniques from computational geometry, string
algorithms and data mining.
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We showed that the Split-Merge algorithm runs in almost linear time in average, more precisely in
O(k?4 IN(logN)?*1) time using O(k? !N) space for nearly random texts of size N [4].

3. DATA SETS AND EXPERIMENTS

We applied our email mining method to interactive email-document mailing list. Based on the
Split-Merge algorithm [4], we developed a prototype system on a Microsoft NT workstation, and run
experiments on a medium sized English email collection.

We used an English mailing list collection, called “irakian war news mailing list” , which consists of
emails of 8.4MB from November 2002 to April 2003. The sample set is a collection of semi-structured
email texts of the total size 10.2MB obtained from “irakian war news mailing list” by removing all but
category tags. The target (positive) set consists of 620 emails with category bases and the background
(negative) set consists of 7244 emails with other categories such as war, military, target, missile, and
so on. The average length of emails is 1120 letters.

By experiments on “irakian war mailing list” above of 10.2MB, the prototype system finds the best
300 patterns at the entropy measure in seconds for d = 2 and a few minutes for d = 4 and with k =
2 words using a few hundreds mega-bytes of main memory on Intel PIII, 500MHz, c++ on Windows
NT, 512MB main memory.

4. RESULTS AND CONCLUSION

In Table 1, we show the list of the phrase patterns discovered by our mining system, which capture
the category bases relative to other categories of “irakian war news”. In Fig. 1 (a), we show the list of
most frequent keywords discovered by traditional frequency maximization method. On the other hand,
we list in Fig. 1 (b) and (c), we show the list of optimal patterns discovered by entropy minimization
method. The patterns of smallest rank (1-8) contain the topic keywords in the major email-documents
(Table 1 (b)). Such keywords are hard to find by traditional frequent pattern discovery because of the
existence of the high frequency words such as <the> and <are>. The patterns of medium rank (311-
318) are long phrases, such that <intelligence agencies> and <irakian oil platform>, as a summary
(Table 1 (c)), which cannot be represented by any combination of non-contiguous keywords.

(a) Frequency maximization  (b) Entropy minimization (c) Entropy minimization

1 <news> 1 <war> 311 < war began>

2 <the> 2 <military> 312 <irakian oil platform>
3 <to> 3 <bases> 313 <intelligence agencies>
4 <of> 4 <target> 314 <military port>

5 <and> S5<irakian> 315 <civilian victims>

6 <in> 6 <attack> 316 <democracy>

7 <all> 7 <forces> 317 <water>

8 <a> 8 <missile> 318 <freedom>

TABLE 1. Phrase mining with entropy optimization to capture bases category. To see
the effectiveness of entropy optimization, we mine only patterns with d=1, i.e., single
phrases.

(1) The best 8 frequent phrases found by traditional frequent pattern mining.
(2) Short phrases of smallest rank, 1-8.
(3) Long phrases of middle rank, 311-318 found by entropy minimization mining.
The data set consists of 9453 email-documents of 8.4 MB from mailing list in 2002-2003.
Table 2 shows an experiment on interactive email-documents browsing, where we try to find an article
containing a specific topic from a collection of emails by using optimized pattern discovery combined
with keyword search.
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(a) Stage 1 (b) Stage 2 (c) Stage 3

Rank Pattern Rank Pattern Rank Pattern

30 <navy> 1 <military> 1 <troops> <and> <the>

31 <military> 2 <u.s.> 2 <troops> <on> <the>

32 <tank> 3 <troops> 3 <troops> <were> <action>

33 <desert> 4 <missiles> 4 <troops> <were><still in action>
34 <attack> 5 <sea> 5 <troops> <to> <after>

35 <subunit> 6 <tornado> 6 <troops> <on> <action>

36 <water> 7 <machinegun> 7 <troops> <said> <were>

37 <gulf> 8 <gulf> 8 <troops> <commander> <of>

TABLE 2. Email-documents browsing by optimized pattern discovery: (a) First, a
user tries to mine the original target set using optimized pattern discovery over phrases
using the background set (d = 1; k = 0). The user selected a term <subunit> of rank
35. (b) Next, the user mines a subset of articles relating to <subunit> and mine
this set again by optimized phrases (d = 1; k = 0). He obtained topic terms on troops.
(c) Finally, the user tries to discover optimized patterns starting with troops on the
same target set (d = 4; k = 2 words). The underlined pattern indicates an action by
a subunit of troops.

First, we suppose that a user is looking for articles related to the war problem, but he does not know
any specific keywords enough to identify such articles:

(a) Starting with the original target and the background sets related to subunit category in the
last section, the user first finds topic keywords in the original target set using optimized pattern
mining with d = 1, i.e. phrase mining. Let troops be a keyword found.

(b) Then, he builds a new target set by drawing all articles with keyword troops from the original
target set. The last target set is used as the new background set. As a result, we obtained a
list of topic phrases concerned to troops.

(c) Using a term troops found in the last stage, we try to find long patterns consisting of four
phrases such that the first phrase is troops using proximity k = 2words. In the table, a pattern
<troops> <were> <still in action> found by the algorithm indicates that there is an action
by a subunit of troops.

In conclusion, in this paper we investigate and experiment a new method for large emails database
on internet-based text mining used for increasing security in email system.

First, we formalized text mining problem as the optimized pattern discovery using a statistical
measure. Then, we gave a fast and robust pattern discovery algorithm which was applicable to a large
email collection and present the experiments and the resultants.

Thus, it will be an interesting future problem to develop an efficient algorithm to find optimal pattern
in emails collection for increasing security.
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Abstract. A group signature scheme allows any group member to sign on behalf of
the group in an anonymous and unlinkable fashion. In case of dispute, group manager
can reveal the identity of the signer. Recently, S. Xia and J. You proposed a group
signature scheme based on identity with strong separability in which the revocation
manager can work without the involvement of the membership manager. But their
group signature scheme is not secure because two or more group members can collude
to construct a valid signature and any group member can forge a valid membership
certification. In this paper we improve the Xia-You group signature scheme such that
our group signature scheme is secure against coallition attack.

1. INTRODUCTION

Digital signature can be used to authenticate the identity of the sender of a message or the signer of
a document and to identify data integrity. With high Internet development, digital signature plays an
important role in electronic commerce and identity authentication. Group signature is very important
signature with additional functionality.

Group signature is a relatively new concept introduced by Chaum and Heijst [4] in 1991. A group
signature allows the signer to demonstrate knowledge of a secret with respect to a special document.
A group signature is publicly verifiable: it can be validated by anyone in possession of a group public
key. However, group signatures are anonymous in that no one, with the exception of a designated
group manager, can determine the identity of the signer. Furthermore, group signatures are unlinkable
which makes computationally hard to establish whether or not multiple signatures are produced by the
same group member. In exceptional cases any group signature can be opened by a group manager to
reveal unambiguously the identity of the actual signer. At the same time, no one, including the group
manager, can misattribute a valid group signature. Many group signature schemes have been proposed
[1, 2, 3, 6]. However all of them are much less efficient than regular signature schemes (such as DSA
or RSA). Designing an efficient group signature scheme is still an open research problem. Recently,
several group signatures based on identity [9, 10] was proposed. Unfortunately, these schemes have
been attacked soon. In [10], Xia-You presented a novel group signature scheme based on identity. In
[5], it is analyzed the security of Xia-You group signature scheme and two or more group members can
collude to construct a valid signature and any group member can forge a valid membership certificate.
All the above attacks cannot be traced by the group manager.

2. XI1A-YOou’s GROUP SIGNATURE SCHEME

Xia-You [10] presented a novel group signature scheme with strong separability based on the identity
cryptographic system, firstly introduced by Shamir [8]. More detailed description refers to the original
paper [10].
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2.1. Trusted Authority Setup. The trusted authority chooses two big prime numbers p; = £1
(mod 8), p» = £3 (mod 8) of about 100 decimal digits such that p; —1 and ps — 1 contains several prime
factors of 13 ~ 15 decimal digits, but no larger on, and that (p; — 1) /2 and (p2 — 1) /2 are relatively
prime. Let n; = p; * pa. According to the selection of p; and ps, the Jacobi symbol n?—l = —1 and
the trusted authority can easily find the discrete logarithm modulo p; and py respectively. Finally, the
trusted authority randomly chooses a number g which meets g < min (p;, p2) and publishes (n;, g) and
keeps (p1,p2) secret.

2.2. Group Member’s Private Key Generation. Suppose Alice wants to join a group. Alice
submits her own identity information D4 to the trusted authority and the trusted authority sets
ID4 = Dy (modny) if Dy/ny = 1 or ID4 = 2Dy (modny) if Dg/ny = —1. Finally, the trusted
authority computes the private key z4 of Alice as follows

ID4 = g"* (modny) .

2.3. Group Manager’s Setup. The group manager chooses two strong primes ps, ps and computes
a RSA modulo number ny = p3 * py (n1 < ny). The public exponent is e and the private exponent is
d. The group manager chooses two integers « € Zy,,h € Z}, and computes y = h* (mod n,) satisfying
y € 7}, . Let H (-) be a hash function such that H : {0,1}" — Zy,. The public key of the group manager
is (n2, e, h,y, H) and his secret key is (z,d, p3,p4) -

2.4. Signing Phase. When Alice wants to join the group, the group manager computes z4 = ID% (mod n»)
and sends it to Alice in a secure way. Alice verifies the validity of z4 by ID4 = 25 (modns). When

a group member Alice, with (z4,z4), signs a message m, she chooses random integers «, 3,0,w € Zy,
and § € Zy, and computes as follows:

A= (y*z4) (modns)

B=y“IDy4

C = h¥ (modny)

D = H (ylgllmIBIBIC o]t s m)
E=6—-D(ae —w)

F=3—-Duw

G=0—Dzxy

where B = B (modni),v = (A°/B) (modns),t; =y (modns),t> = (y?¢?) (modni),t; = h® (modn,).

Finally, the group signature on m is (4,B,C,D,E,F,G).

2.5. Verification Phase. If the verifier validates the message-signature pair {m, (4,B,C,D,E,F,G)},

= (4°/B) (modny), t} = (v'"Py¥) (modny),th = (ﬁ’DngG) (modny),ty =
(CPh*) (modny), D' = H(yllgl|R||BI|B'||C|| v'||t,||t5 ||t |lm) iff D' = D, the verifier accepts the signa-

ture.

verifier computes: B' = B (modn,),v'

3. IMPROVED XIA-YOU GROUP SIGNATURE SCHEME

In this section we present the improved Xia-You group signature scheme such that this scheme is
secure against coalition attacks. In this description, the group manager is also a trusted authority.

3.1. Setup. The setup procedure of our group signature scheme is as follow. The group manager
executes next steps:

(1) Chooses two big prime numbers p; = +1 (mod 8) , p» = £3 (mod 8) of about 100 decimal digits
such that p;1 — 1 and p» — 1 contains several prime factors of 13 ~ 15 decimal digits, but no
larger on, and that (p; — 1) /2 and (p2 — 1) /2 are relatively prime. Let n = p; * ps.

(2) According to the selection of p; and ps, the Jacobi symbol % = —1 and the group manager can
easily find the discrete logarithm modulo p; and ps respectively.
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(3) Chooses two integers © € Zy, h € Z? and computes y = h” (mod n) satisfying y € Z.
(4) Let H (-) be a hash function such that H : {0,1}" — Z,.
(5) The public key of the group manager is (n, h,y, H) and his secret key is (z, p1,p2) -

3.2. Join. Suppose now that Alice wants to join the group. We assume that communication between
the group manager and Alice is secure, i.e., private and authentic. To obtain her membership certificate,
Alice must perform the following protocol with the group manager:

(1) let ID4 be a string denoting the identity of a user Alice. Then, Alice sends ID 4 to the group
manager;
(2) the group manager computes z4 = ID% (modn) and sends it to Alice in a secure way.

3.3. Sign. In our scheme, ID 4 is the public component of a RSA signature public and private key
pair generated by Alice herself. The public and private key pair will be referred to as (ID4,d4) in the
remainder of this paper. First, the user Alice signs a message m € {0,1}" with her private key d4 and
the corresponding RSA signature scheme

RSASi g =m4 (modn).

Then, the group member Alice can generate anonymous and unlinkable group signatures on a message
m € {0,1}" as follows:

(1) chooses a random number k € Z};

(2) computes S =H (m ||y || h| 2%);

(3) the group signature GroupSig is then the concatenation of the previously generated RSA
signature RSASig, S with the Alice’s public key ID 4:

GroupSig = m4 (modn) || S || ID 4.

3.4. Verify. A user verifies that the signature was generated by Alice and not by the group manager
by verifying using the Alice’s public key I D4 and the corresponding RSA signature that RSASig is
valid

m = RSASig'P4 (modn).

Since the group manager does not know the private key d4 it will not be able to generate a valid
RSASig.

3.5. Open. The group manager knows the identity ID 4 of the user Alice that is associated with it.
This binding is established during the Join phase. As a result, it is easy for a group manager, given a
message m € {0,1}" and a valid group signature GroupSi g, to determine the identity of the signer.

4. SECURITY CONSIDERATIONS

In this section, we access the security of our group signature scheme according to the security
properties defined in [1]. In our scheme, a group signature is the concatenation of the identity based
signature with the user’s public key. Therefore if the underlying identity RSA-based signature provides
anonymity and if the user’s public key does not reveal any information about the user, anonymity is
guaranteed by the group signature scheme. In our group signature scheme, a group member cannot
sign behalf of other members because it does not know the other members’ private keys. The group
manager knows each users’ private key z4, but he do not knows the users’ RSA private key d 4. Since,
the group manager generates each member private keys from their public keys, it can easily identify the
actual signer of a valid group signature by looking at the public key exponent in the group signature
GroupSig. A colluding subset of users, that have received their private key from the group manager,
cannot, generate a valid signature that the group manager cannot link to one of the colluding users.
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5. CONCLUSION

This paper presented an improved Xia-You group signature scheme which is secure against the

coalition attack. The generated group signature can handle large groups since the group public key
and parameters are constant and do not depend on the group members. The security of such a group
signature depends on the security of the RSA based signature scheme it was derived from. In our group
signature scheme we used the ideas from reference [7].

(1]
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1. INTRODUCTION

Recently, it often takes unrealistic time to obtain a result when we analyze a lot of data, for example
in the case of data mining. Then, one of ways to solve this time-consuming problem is to use Parallel
Virtual Machine (PVM), which allows us to compute quickly such as a super computer, whereas it
requires much labor to use. In this paper, we would like to propose a Graphical User Interface (GUI)
for parallel data analysis with PVM.

In data analysis field, we have many optimization problems that require computation for different
initial values to search optimum. We even reach to some local optimum with one initial value, we
need to restart from another initial value to search better local optimum. We need to search the local
optimum repeatedly, starting with many different initial values, finally to find the global optimum, that
requires much computational power. In the paper, a system of parallel computation for such problems
with PVM library is presented.

2. PROBLEMS OF PVM

PVM is a software library which enables many computer machines to work as a single high perfor-
mance machine. Computers in PVM environment should be TCP/IP connected. PVM allows machines
with different Operating System connected, for example, with Linux and Windows NT. It is useful for
parallel data analysis, but it has some operational problems. Because we operate PVM system with
command line, we must type a PVM command with various options, for example to redirect output of
a job to console. Moreover, PVM doesn’t support command history. Consequently, we need to type
the same PVM command repeatedly. If we use PVM in a large amount of machines, listing hostnames
of all machines must be a time-consuming operation. When we finish programming and preparing to
execute it, we still have business to do. Another problem is to copy an executable file to all hosts,
which is inefficient to copy it manually.

PVM is a software package that was developed by Oak Ridge National Laboratory in the USA. It
allows a collection of computers hooked together by a network to be used as a single large parallel
computer and, realizes parallel computing with a mechanism, called “ message passing” . With PVM
it is possible to develop some statistical data analysis programs, such as clustering or Sliced Inverse
Regression with projection pursuit.

3. ProrosED GUI ror PVM

To overcome these problems, we developed a GUI system for PVM. This system has many functions,
including as follows:

e spawn tasks easily;
e make a hostfile semi-automatically;
e copy an executable file to all hosts with using hostfile.

It is useful to show a snapshot of such a GUI system.
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4. OPTIMIZATION FOR DATA ANALYSIS
Optimization problems are in general, formulated as follows:
minimize f(z) = f(x1,x2,...,2,) = R1, subject to = D Rn.

We start with the initial point o = (zo,, Zo,, - - -, To, ). With optimization algorithm we get reached
to minimum, local minimum, that depends on the initial point

f(z) = f(x1,22,...,2,) — min (local).

We need to search local minima repeatedly starting with various initial points to get the “global”
minimum:

min (global) = minimize ( min/local,, min/local,,...).

With PVM master-slave ides, master machine delivers initial points to each slave machine on which
local minimization is executed. After receiving local minimum from a slave, master sends another initial
point to the slave if waiting queue of initial points at the master is not empty. Master machine selects
the smallest value among local minima after receiving all local minima from slave machines. We regard
the value as the global minimum.

We implement k-means clustering algorithm, where we need to minimize value of within-group
dispersion. The algorithm is applied to data of 3000 points in a plane to be clusterized, starting
with initial clustering. We get local minimum value of within-group dispersion starting with a initial
clustering, then with another initial clustering we get next local minimum.

5. CREATING A METADATA REPOSITORY

It is important for each biostatistics department to create a centralized networked clinical trials
database system. The Biostatistics Information Tracking System (BITS) contains over 1000 clinical
trials conducted in support of finding the causes, prevention and cure of a disease. BITS was originally
developed using the Advanced Revelation software system, deployed over a PC network. The system
is password protected to restrict access to research staff and investigators.. BITS incorporates all data
required for protocol administration, survival analysis, and employs electronic interfaces to demographic
and laboratory data.

For all patients registered onto a clinical trial, data on eligibility status, informed consent date,
diagnosis, study arm, dates on and off treatment, follow-up interval, last contact date, relapse and
survival status are computerized in BITS. Protocol — specific data include the prior treatment, protocol
treatment, toxicity, treatment response, and any other results required for the final analysis. At the
time of a full study analysis the data are exported from BITS into SAS for programming by the
department’s biostatisticians. The system can be migrated to MS SQL Server with Web-based screens
and acannnable forms as the new interface applications and in this case it is very useful to use the
PVM software, as well as the above mentioned algorithm.

A critical lesson learned during the construction and subsequent development of BITS is that the
metadata are key to a sound, effective data system. Metadata are “ data about the data” , that is infor-
mation concerning the type and meaning of the data that stored in an electronic system. The metadata
consist of two components, the “ business directory” that provides a definition of each data element,
along with the key words, synonyms, and directives for collecting each element and, the “ technical
directory” which includes information obtained directly from the data model itself. It is necessary to
create the electronic storage system for this information in the form of a “ metadata repository” . The
steps in planning this one included: writing of the project specification and gathering user require-
ments; analysis of data dictionary requirements; creation of the metadata repository model; validation
of this model; construction of the physical database; conducting an export of existing metadata from
BITS into the metadata repository. And updating or inserting additional business and technical data
as need.

The next step is to create the design specification for the Web application front end to edit and access
the data stored in the metadata repository. A critical step which is often overlooked is the creation and
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routine implementation of Standard Operating Procedures (SOP) for on-going timely maintenance of
the metadata repository. After populating the metadata repository with the BITS metadata elements,
we desired to utilize this system to harmonize and align data elements across two additional data
systems that have been developed by and/or are maintained within a department of biostatistics.

This system will facilitate the training and quality assurance of the data being collected for statistical
data analysis. Another goal is to expand and utilize this metadata repository approach to manage data
contained in a research data warehouse. This will represent the optimal means to facilitate future
complex and multi-disciplinary analyses.
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Abstract. This paper shows how MAPLE V could be used to locate and test global
and local extrema and also to solve optimisation problems that have constraints.
These problems are studied by the students in the first year of technical faculties and
can be taught even if the students lack advanced programming knowledge.

We present here some programs made in MAPLE V which can be used in fast solving
of different exercises of extrema and constrained optimisation problems.

1. INTRODUCTION

In many fields researchers find MAPLE V to be an essential tool for their work. MAPLE V is ideal
for formulating, solving and exploring mathematical models.

Instructors use it to present lectures. Educators in high schools, colleges and universities have revi-
talized traditional curricula by introducing problems and exercises that exploit MAPLE V’s interactive
mathematics; students can concentrate on important concepts rather than tedious algebraic manipula-
tions.

The way in which we use MAPLE V is in some aspects personal and depends on our needs.

When we work on a problem in a traditional manner, attempting a particular method of solution,
it may take hours and many pages of paper. MAPLE V allows us to tackle with much larger problems
and frees us from human errors.

The purpose of the paper is to show how MAPLE V could be used to locate and test global and
local extrema and also to solve optimization problems that have constraints.

The programms that are presented here consist in step by step instructions. This allows us to easily
modify a step or insert a new one in our solution method. MAPLE V can then compute the new result
easily.

2. LOCAL AND GLOBAL EXTREMA

2.1. Statement of the problem. Let f be a function, f: A C R* - R (k= 2,3). A point a from
A is said to be ”a relative minimum (or maximum)” if there is a neighborhood of the point a such as
f(@) > f(a) (f(z) < f(a)) for every z which belong to that neighborhood.

To find relative maxima, minima and saddle points of a function of two or three variables we use
the following procedure (we assume that f satisfy the necessary conditions to presume the following
operations):
find the critical points; they are the points for which f, and f, vanish simultaneously;
find the Hessian matrix of the function f;
evaluate the Hessian matrix at the critical point(s);
test the positivity of the Hessian matrix at the critical point(s). If the Hessian matrix is
positively defined, then a relative minimum occurs at that critical point. If the Hessian matrix
is negatively defined, then a relative maximum occurs.

2.2. Maxima and minima for functions of two variables. In this section we show how MAPLE
V can be used to locate and test for local and global extrema for functions of two variables.

Problem 1. Consider the function f defined by: f(z,y) = z® + 3> — 3zy. Find the relative mazima
and minima for function f.

The function can be defined into a MAPLE V session by the following command:
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FIGURE 1

>with(student) :with(linalg):
>f:=x"3+y " 3-3*x*y;

In order to find the exact location of the critical points for the function f, we need to determine
the first derivatives

>dfx:=diff (f,x);
dfy:=diff(£f,y);

The critical points are the points for which f, and f, vanish simultaneously

>sols:=solve ({dfx=0,dfy=0},{x,y});
>s1:=sols[1];
s2:=sols[2];

Thus, in this case there are two critical points: (0,0) and (1, 1).
In order to characterize the critical points, (for every critical point) we evaluate the Hessian matrix
at that point and then we test the positivity of this matrix

>H:=hessian(f, [x,y]);
>a:=subs(s1,H[1,1]);
b:=subs(s1,H[1,2]);
c:=subs(s1,H[2,2]);
>H1:=matrix(2,2,[a,b,b,c]);
>definite(H1, ’func{positive}\_def’);
definite(H1,’func{negative}\_def’);
>a:=subs(s2,H[1,1]);
b:=subs(s2,H[1,2]);
c:=subs(s2,H[2,2]);
>H2:=matrix (2,2, [a,b,b,c]);
>definite(H2, ’func{positive}\_def’);
definite(H2, ’func{negative}\_def’);

In conclusion, (0,0) is a saddle point and (1,1) is a minimum point.
Geometric interpretation: The following commands illustrate how graphic visualization can be
used to get an idea about extreme values

>plot3d(f(x,y),x=-3..3,y=-3..3,style=patch,orientation=[70,65] ,axes=FRAMED) ;
>plot3d(f(x,y),x=-0.1..0.1,y=-0.1..0.1,style=patchcontour,orientation=[70,65]);
>plot3d(f(x,y),x=0.9..1.1,y=0.9..1.1,style=patchcontour,orientation=[70,65]);
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FIGURE 2

Indeed, these plots provided further evidence that the point (0,0) is a saddle point (fig. 1) and at
(1,1) a relative minimum occurs (fig 2).

2.3. Maxima and minima for functions of three variables. The following example is the case of a
function of three variables. We present here the MAPLE V commands necessary for the determination
of the relative maxima or minima.

Problem 2. Find the relative mazima or/and minima for the following function:

y2 2’2 2
f(a:,y,z)—a:+4x+ ; +z

>ti=x+(y~2)/ (4xx)+(2"2) /y+2/z;
>with(student) :with(linalg ):
>dfx:=diff(f,x);

dfy:=diff (£f,y);

dfz:=diff (f,z);
>sols:=solve({dfx=0,dfy=0,dfz=0},{x,y,2z});
>sl:=s0ls[1];

s2:=so0ls[2];
>H:=hessian(f, [x,y,2]);
>a:=subs(s1,H[1,1]);b:=subs(s1,H[1,2]);c:=subs(s1,H[1,3]);
>d:=subs(s1,H[2,3]);e:=subs(s1,H[2,2]);f:=subs(s1,H[3,3]);
>H1:=matrix(3,3,[a,b,c,b,e,d,c,d,f]);
>definite(H1, ’func{positive}\_def’);
definite(H1,’func{negative}\_def’);
>a:=subs(s2,H[1,1]) ;b:=subs(s2,H[1,2]);c:=subs(s2,H[1,3]);
>d:=subs(s2,H[2,3]);e:=subs(s2,H[2,2]);f:=subs(s2,H[3,3]);
>H2:=matrix(3,3,[a,b,c,b,e,d,c,d,f]);
>definite(H2, ’func{positive}\_def’);
definite(H2,’func{negative}\_def’);

We deduce that (%, 1,1) is a point of relative minimum and (—%, —1,—1) is a point of relative
maximum.

3. CONSTRAINED OPTIMIZATION

3.1. Mathematical concepts. The optimization problems that have constraints are of the following
type:

Problem 3. Find the mazimum or minimum of the function f(z,y,z) subject to the constraint g(z,y,z)=0.
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Here we consider the case of functions of three variables. We assume that f and g satisfy the
necessary conditions for the following operations.
The algorithm is the following:
e form the “objective” function F(z,y,2) = f(z,y,2) + A\g(z,y, 2);
e find the critical points of f(z,y,z) which satisfy the constraint g(z,y,z) = 0. These are the
points that make all the partial first derivatives equal to zero.
The following steps will be repeated for every critical point:
e evaluate d>F at the critical point;
e evaluate dg at the critical point;
e evaluate dz from dg = 0 (at the critical point) in terms of dz and dy and introduce it in d*F
at the critical point;
e study d?F for classifying the critical points. If d?F is positively defined, then we have a
minimum. If d>F is negatively defined, then we have a maximum.

Remark 4. If we have two constraintes g1(x,y,z) = 0 and g2(x,y,2z) = 0, we must following the same
procedure with the objective function: F(x,y,z) = f(x,y,2) + Agi(z,y,2) + Aaga(2,9, 2).

We find the critical points as previously and then we evaluate d?F' at the critical point(s). We solve

the system (at the critical point) dg. =0

de =0

introduce these in d>F and study the quadratic form d?>F in order to classify the critical points.

} and we evaluate dy and dz as a function of dz. We

3.2. A MAPLE V program for constrained optimization. Consider the case of a function of
three variables and with one constraint (the case of three variable functions and two constraints is
similar; the program for this case can be find on the floppy disk which is attached to this paper).

Problem 5. Find the extremum of the function f(x,y,z) = zy + yz + xz, subject to the constraint
zyz=1,2 >0,y > 0,2 > 0.

First, we define the functions f and g by using MAPLE V commands:

>with(student) :with(linalg):
>Ei=(X,y,2)=> X*y+y*z+x*z;
g:=(x,y,2)-> x*y*z-1;$

Then we introduce the objective function F' and solve the system for finding all the critical points.

>F:=(x,y,2)-> £(x,y,z)+lambda*g(x,y,z);

>dFx:=diff (F(x,y,2),x);

>dFy:=diff (F(x,y,2),y);

>dFz:=diff (F(x,y,2),2);
>sols:=solve({dFx=0,dFy=0,dFz=0,g(x,y,2)=0},{x,y,2,lambda}) ;
>sols[1];

We calculate the first partial derivatives of the function g and all the second partial derivatives of
the function F’

>dgx:=diff(g(x,y,2),%);
dgy:=diff(g(x,y,2),y);
dgz:=diff(g(x,y,2),2);
>d2Fx :=diff (diff(F(x,y,2),X),X);
d2Fy:=diff (diff(F(x,y,2),y),¥);
>d2Fz:=diff (diff(F(x,y,z),2),2);
d2Fxy:=diff (diff (F(x,y,2),x),¥y);
>d2Fxz:=diff (diff (F(x,y,2),x),2);
d2Fyz:=diff (diff(F(x,y,2),y),2);
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Evaluate the dz function of dz and dy from the equation dg = o and introduce it in d?>F

>sol:=solve ({dgx*dx+dgy*dy+dgz*dz=0},dz) ;
>d2F : =d2Fx* (dx) "2+d2Fy* (dy) "2+d2Fz* (dz) ~2+2%d2Fxy* (dx) * (dy) +2*d2Fxz* (dx) * (dz) +2*d2Fyz* (dy) * (dz) ;
>subs(sol,d2F);

p:=evala(subs(sol,d2F));

We study then the quadratic forme d?F by using the MAPLE V command “definite”

>assign(sols[1]);p;a:=coeff(p,dx"2);b:=coeff(p,dy~2);c:=tcoeff(p);
>H:=matrix(2,2,[a,c/2,c/2,b]) ;definite(H, ’ func{positive}\_def’);
>definite(H, ’func{negative}\_def’);$

>unassign(’lambda’) ;unassign(’x’);unassign(’y’});unassign(’z’);

In conclusion (1,1,1) is a minimum point for function f subject to the constraint g.

4. CONCLUSIONS

Using computational techniques in every day teaching brings a lot of advantages; the student can
better understand the significance of notions and of results of some exercises. Also, the results of some
typical problems (analytical calculus) could be obtained too by those who do not master traditional
techniques of calculus.

Some properties could be guessed by graphical analysis and next rigorously demonstrated (which is
the case of the problems presented here - see geometrical interpretations).

The presented programms lead the student to change some instructions of the program for obtaining
the result, proving the understanding of the correct algorithm.

For a better understanding of Mathematical Analysis and for learning the main methods of solving
problems, MAPLE V can be very successfully used. This does not diminish the importance of theoretical
knowledge, but fulfills it.
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The Dual Intuitionistic Logic [1] (D.I.L.) is based on formulas constracted from symbols of variables
D, ¢, T, S, possibly with supscripts, by means of three pairs of dual operators: & and V, — and J (weak
negation), D and — (substraction), and parentheses. Close conections of D.I.L. with the theory of
distributive lattices were noticed in [2].

The formula F is said to be expressible in a logic L by means of the system ¥ (of formulas) if F' can
be obtained, starting with variables and formulas of X, by means of weak rule of substitution or rule
of replacement by equivalent elements in L. A system X is said to be (functionally) complete in a logic
L if all formulas are expressible in L by means of X.

The conditions of completeness in chain extensions and in simplest non-chain extensions of D.I.L.
were found out in [3, 4].

Let mp = 1 and let E,, mean {0,79,71,...,Tm—2} (if m is finite), or {0, 79,71, 72,...} (if m is o).
Let E,, be a liniar ordered set 79 > 71 > ™ > ....

Let us define the following operations on E,,: p&q = min(p,q), pV q¢ = maz(p,q), p D ¢ =1 (if
p<q)andpDqg=q (ifp>q),p—qg=0(fp>qg)andp-g=gq (ifp<q),p=pD0, p=p-1

Thus, we obtain the algebra

Wy =< Ep; {&,V, D, —, 7, 1} >
The interpretation of formulas on this algebra leads us to some logic L2,,. It take place the relations

LA, DIA; D ---DLA; D--- D D.I.L.

Theorem 1. In order that a system (of formulas) ¥ be functionally complete in the logic LA, (m > 4)
it is necessary and sufficient that ¥ be functionally complete in the logic LU,

Let consider the simplest non-chain algebra Z; = {0,p,0,w,1} were the elements p and o are
incomparable,and 0 < p<w < 1,0< 0 < w.

Theorem 2. The system (of formulas) ¥ is functionally complete in the logic L5 iff ¥ is complete in
L3, and for any of the 20 predicates indicated in [{] there exists in ¥ a formula that does not preserve
it on Zs.
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A variational principle for a hydromagnetic problem

Florica Radund, Adelina Georgescu, Cristian Dragomirescu

University of Pitesti, Romania

Abstract. A linear magnetic Bénard problem with tensorial electrical conductivity
[1] governing the stability of the mechanical equilibrium of a viscous incompressible
horizontal layer heated from below and acted upon a vertical magnetic field is shown to
be equivalent to a variational problem. The given mathematical problem is formulated
in Section 1 as a two-point problem for a system of ordinary differential equations.
In Section 2 the adjoint of the matricial differential operator defining this problem
is constructed while in Section 3 the functional defining the variational formulation
equivalent to the given two-point problem is deduced.

1. MATHEMATICAL PROBLEM

Consider a homogeneous thermoellectrically conducting fluid situated in a horizontal layer S bounded
by the planes 7y : z = 0 and 71 : z = 1, both stress-free, perfectly thermally and electricaly conductors.
A constant vertical temperature is maintained in the presence of a uniform vertical magnetic field Hy.
The dimensionless equations governing the perturbation u, h, 8, p of the thermodiffusive equilibrium mg

mo ={U =0,H = Hok,T = —z + To,po = po(2)}

are
([ Zu=—u-Vu- Vp+P,Au+ P, M?(Hy +h)- Vh + RE 6k,
Zh=V x[ux (Ho+h)]+Ah+ BV x [(Ho+h) x V x h],
(1) A6=-u-Vo+u k+L=Ag,
V-u=0,
| V-h=0,

where u is the velocity field, h is the magnetic field, k is the upwards positive unit vector, 6 is the
temperature, p is the pression, the positive coefficients P,, P,,, M? and R are the Prandtl, Prandtl
magnetic, Hartmann and Rayleigh numbers respectively, Sg is the Hall coefficient occuring in the
generalized Ohm’s law.

With equations (1) we associate the boundary conditions corresponding to the specified type of fluid
and flow. By performing the change of variables z — z — 0.5 and assuming that the perturbations are
normal modes, i.e.

(2)  (w,hs,j,7,0) = {W(2),K(2),X(2), Z(2), O(2)} expli(az + By) + o],
where w =k -u, h3 =k-h, 7=k -V Xu, j =k-V x h, the boundary value problem for the equations
(1) becomes
(D? — a®> — 0®)K + DW — Bz DX =0,
[Pm(D? —a?) — 0] Z + P M*>DX =0,
3) (D? — a?) [P (D? — a?) — 0] W + P, M2D(D? — a®)K — R%2a0),
(D2 — a2 — 0)X + DZ + BuD(D? — a®)K =0,
[%;(D?—a%—a] O+W =0,

4 W=DW=K=DX=DZ=0=0, z==+0.5,
where a? = a? + 2.
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2. THE ADJOINT PROBLEM
The problem (3) has the form LU = 0, where
L:D(L) = [C*(~0.5;0.5)]

is a linear matricial differential operator

D D?—a%I-0I —BuD 0 0
0 0 PoM?D P, (D*—a®I)—0l 0
2
(D?—a?)[Pm(D*~a?)—0] P M?D(D*—a?) 0 0 —-R7 a1 ,
0 BuaD(D?—a?) D?*—a?I—0olI D 0
I 0 0 0 P (D*—a?1)—0ol

I is the identity operator on D(L), O is the null operator,
D(L) ={U = (W,K, X, Z,0),U € [C®[-0.5;0.5]]" and satisfies(4)}.

The domain D(L) C [LQ(—0.5;0.5)]5, L? is a Hilbert space of all functions f having the property

fi)'o5_5 f?dxr < oo (the integral is taken in the Lebesgue sense).

Remark. If a linear matricial nt* order differential operator L, given by a n x n matrix (ai;), where

aij = Y a¥;D* (D* = %) and af; are constants, is selfadjoint the we must have a;; = Y (=1)*ak; D¥.
k=1

J
k=1
In our case, this condition is not fulfilled, hence the operator L is not selfadjoint. Let us now construct

the adjoint operator of L. First remaind that the scalar product in [LQ(—O.E); 0.5)]5 is, by definition,
05 5 .
(fa g) = / Z figidz, f,g € [LQ(—0.5; 0.5)] .
=05 =1

Completing D(L) in the [L*[—0.5; 0.5]]5 norm we obtain a Hilbert space H, WH.HN =H.
The adjoint operator of L, denoted by L*, L* : D(L*) C H — H is defined by the relation (LU, U*) =
(U, L*U*), where U € D(L) and U* € D(L*).
Here U = (W, K, X, Z,0) and U* = (W*, K*, X*, Z*,©0%).
We have
(LU, U*) = [*° (D? —a®> — 0)KW* + DWW* — By DXW*+
[P (D? — a®) — 0| ZK*+ P M2 DX K*+
+(D? = a?)[Pn(D? = a?) — o]WX* + Pp M2D(D? — a*) K X* — R¥2a?0X "+
+(D? —a? - 0)XZ*+ DZZ* + fuD(D? — a®)KZ*+
+[5=(D? - a?) — 5]00* + WO,

Integrating by parts the expression (LU, u) and taking into account the boundary conditions (4) we
obtain

(LU, U*) = [DW (P (D2X* — 2a°X*) — 0.X*) + D3W Py X*+
+DK(W* — P, M2DX* — ByDZ*) + D2K (P M2X* + By Z*)+
+X(=BuW* + P, M?K* — DZ*) + Z(~PmDK* + Z*) + £ D0©*)|°§ 5+
+ [0 {(D? = a®)[P(D? — a?) — 0] X* — DW* + 0*}W +
+{(D? — a? — 0)W* — P, M2D(D? — a?)X* — B D(D? — a*Z*)} K +
+{BuDW* — P,,M?DK* + (D* —a® — 0)Z*} X +
+{[Pn(D? — a?) —o]K* — DZ*}Z+
+H{[£=(D? - a2) - 0]0* — REma2X™}0.
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In order to have the equality (LU, U*) = (U, L*U*), taking into account the fact that the values of
DW,D*W,DK,D?K,X,Z and DO are arbitrary at z = +0.5, we obtain the boundary conditions
(5) —BuW* + Pp,M?>K* — DZ* =W* — P, M?>DX* — fgDZ* =

=DK*=X*=D?X*=7*=0*=0, z = +0.5.
Define D(L*) = {U* € [C*°(—0.5;0.5)]°| U* satisfies (5)}.Then, from the equality (LU, U*) = (U, L*U*)
it follows that the adjoint operator

L*:D(L*) - H

is defined by

-D 0 (D?—a?)[Pm(D*—a)—0] 0 I
D?—a%I—oI 0 —P,M2D(D?*-a*) —BrD(D*-a%) 0
BuD —P,,M?D 0 D%—a%I—06T 0
0 P, (D%*—a?1)—ol 0 -D 0
P2 P 2 2
0 0 —Rg%a"1 0 (D" —a"I)—0l

In this way, the adjoint problem of (3), (4) is the two-point problem (6) for the system
(D?* — a®)[P,,(D? — a®) — o] X* — DW* + ©* =0,
(D? — a2 — 0)W* — Py M2D(D? — a®)X* — By D(D? — a2Z*) = 0,

(©) BuDW* — Py M2DK* + (D2 — a® — 0)Z2* = 0,
[Pn(D? - a?) — 0] K* — DZ* =0,

[1;—’:(D2 —a?) — 0] o0* — R%a%:* =0,

In the following we assume that the principle of exchange of stabilities holds, i.e. ¢ = 0. In this
case, denoting V;* = W* — P, M?DX* — g DZ*, equation (6)2 and (5)2 read (D? — a?)V;* = 0 and
Vi*(£0.5) = 0 respectively implying V;* = 0 in [—0.5,0.5]. This is why the boundary condition (5) is
considered no longer.

3. VARIATIONAL PRINCIPLE FOR THE PROBLEM (3), (4)

By a variational principle we mean a theorem which establishes the equiva-lence between the set of
solutions of a boundary value problem and the set of stationary points of a corresponding functional

[2], [3].
Denote by J(U,u) the functional J : D(L) x D(L*) — R,

b
(7) J(U,U™) :/ LU (z) Lo U*(z)dx

a

and assume that
b
8)  (LU,U") = / LU (&) LoU* (2)dar,

Ly :D(L) — H,Ly : D(L*) - H and

b b
) / LU (2) LaU* (z)dz = / U2)L*U* (2)da = (U, L*U*).

a

Let us apply to J the Lagrange variation to get

b
SJ(U,U*) = / [B(LAU) LoU™ + LyUS(LoU™)dz.
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By this assumption we have f; d(L,U)L.U* = fab d(U)L*U*dz and

b b
/ (L U)S(LaU™)) = / (LU)SU* da.

Consequently

(10)  6J(U,U*) = /

a

b b
LU(SU*+/ L*U*sU.

In this way, J = 0iff LU = 0 and L*U* = 0. This variational principle is conditioned by the possibility
to obtain (8) and (9), by using part integration and the boundary conditions occurring in the definition
of D(L) and D(L*).
In our case, by appropriate by part integrations and taking into account the conditions (4) and (5)1,
(5)3—7, we obtain

(LU, U*) = J(U,U*) = (U, L*U"),
where a = —0.5,0 = 0.5, L and L* are the operators defined in Section 2. Consequently we proved.
Theorem. LU = 0,L*u =0 iff §J(U,u) = 0,YU € D(L),YU* € D(L*).

4. FOURIER SERIES SOLUTION

In order to solve the variational problem for d.J = 0 we can use the direct Fourier techniques so that
the expansion functions satisfy or not all the boundary conditions of the problem, i.e. the Chandrasekar
method or the Budianski-DiPrima method respectively.

This method is used especially when the direct and the adjoint equations are the same and, con-
sequently, the corresponding functional J is symmetric and, thus, Ly and L, have the same expres-
sion(irrespective the relationship between their domain of definition). The expressions for the Fourier
coefficients of the derivatives of the unknown functions become more complicated as the order is in-
creased. So, the best variational principles is that one whose corresponding functional contains the
lowest, order derivatives possible. Therefore, the best variational principle is one in which the functional
is symmetric. For nonsymmetric functionals (as in our case)the best varia-tional principle in that one
involving the lowest order derivatives; several such principle can exist. Formally the functional J is
obtained by performing by part integrations until the relation

(11) (LU, U*) = J(U,U*)

is obtained. This possibility strongly depends on the boundary conditions, assuming that the sum of
free terms (followed as a result of the by part integration and taken at z = £0.5) vanishes. If (11)
cannot, be obtained, i.e. some terms computed at z = £0.5 are left, then the chosen functional is not
appropriate. In fact, in the second case an additional integration was performed enabling us to get
more terms, free terms and thus their sum vanish in view of (4) and (5).

Remark.In applying the Budianski-DiPrima method [1], [4], the functions V;* defined in Section 2 and
Vst = =BuW* + P, M?K* — DZ* occurring in the boundary conditions (5) were revealed also in [1]
and [4] in the system in the Fourier coefficients. We think that a change of variable involving V;* and
V5 could simplify the computation. This idea will be exploited elsewhere.
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Abstract. A system of two coupled identical oscillators, each of them being an adver-
tising model, is considered. It possesses 4 variables and it depends on 3 parameters.
We found the existence of a single symmetric equilibrium point, which is the origin,
and of 4 nonsymmetric equilibria. Analyzing the eigenvalues of the liniarized system
around each equilibrium point, the locus in the parameters space corresponding to
nonhyperbolic singularities is determined.

1. SINGLE ADVERTISING MODEL

Consider the advertising model consisting in the Cauchy problem for the system of two nonlinear
ordinary differential equations (ODEs) [4], [5]

(1) {dc:.k—wa:y—kﬂy,
y=rzy - dy.
Here z (7) is the number of potential buyers at the moment 7, y (7) is the number of the brand users
at the moment 7, v (7) = ay (7) is the contact rate with the advertising at time 7, § is the switching
rate to rival brand and é = 8 + €, where ¢ is the migration or mortality.
Using the transformations

ak € ak? 8
(2) U—Eﬂf—l,v—gy—l,a—g,b—2—g,t

system (1) becomes

3) = —a (u+bv+2uw +v? + uww?),
0 =u+v+ 2uv + v? + uv?,

=0T

where the dot stands for the differentiation with respect to the new time ¢t. As § > 3, we have b > 1,
so the only case of interest from the applications point of view is the case

(4) a>0, b>1
As the equilibrium points of (3) satisfy 4 = © = 0, under the assumptions (4) the only equilibrium

-a —ab > and the

point is (0,0) . The Jacobi matrix of the linearized system around (0,0) is A = < 11

corresponding characteristic equation reads
(5) M+Aa—-1)+ab®-1)=0.

Its discriminant is A = a? —4ab+2a+ 1. The curve ' : A = 0 of the (a, b) plane, is dividing the domain
defined by (4) into regions where the eigenvalues are real or not. Analyzing the sign of ¢trA and det A,
we obtain the nature of the eigenvalues and the sign of their real parts, and thus the topological type
of the equilibrium, as follows (fig. 1):

-regionI: trA >0, det A>0,A > 0,50 A2 € Ry and (0,0) is a repulsive node;

-region II: trA >0, det A > 0,A <0, 50 A1 2 ¢ R, ReAdi 2 > 0 and (0,0) is a repulsive focus;

- region IIT: trA < 0, det A > 0,A < 0,50 A1 2 ¢ R, ReA; 2 < 0 and (0,0) is an attractive focus;

- region IV: trA < 0, det A > 0,A > 0,50 A1 2 € R_ and (0,0) is an attractive node.

- for (a,b) € Hy = {(a,b),a=1,b> 1}, weget trA =0, det A >0,A <0,80 \y o = +iv/b—1, and
(0,0) is nonhyperbolic of Hopf type.
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FIGURE 1. Regions of the parameter domain where the nature and sign of the real
parts of the eigenvalues are preserved.

As it is shown in [4], [5], when crossing the line Hy a Hopf bifurcation takes place and an attractive
limit cycle surrounds the repulsor in regions II and I.

2. COUPLED ADVERTISING MODELS

Our study is designed to emulate two advertising models linked via the flow of potential buyers.
Thus, we choose the form of this coupling to be a constant multiplied by the difference of potential
buyers of the two brands. This leads to a system of four coupled, nonlinear ODEs

’dl = —ai (Ul + bl’l}l + 211,11)1 + ’U% + Ul’l)%) + c10 (Ul — UQ) s
(6) U1 = up +v1 + 2uin +v%+u1vf,
’llQ = —Qa3 (U2 + bQ’UQ + 211,21)2 + ’U% + 'U/QU%) + C21 (UQ — Ul) s

Vg = Uz + v2 + 2u2vs + V3 + uav3.

We focus on the case when the parameter values are such that both models exhibit the same quali-
tative behavior. Thus, we assume that the two models are identical (i.e. a; = as = a,b; = by = b) and
the coupling is symmetric (i.e. ¢;2 = ¢21 = ¢). In this case, (6) reads

uy = —a (ug + by + 2ugvy + 0] + uiv}) + e (ug —us),
V1 = up +v1 + 2uv + v% + ulvf,

(7) S 2 2 _
Uy = —a (’LL2 + buy + 2uqve + v3 + ’LL21J2) +c(u2 —uy),

Vo = Uy + V2 + 2Uvy + V3 + uzvs,

A consequence of the above assumptions is the invariance of equations under the transformation
(u1,v1,u2,v2) ¢ (u2,v2,u1,vr). This symmetry can also be seen in the existence of an invariant
space for equation (7), namely S = {(u1,v1,u2,v2),u1 = us,v; = v2}. Equilibria which lie in S will
be reffered as symmetric and those which are not in S as nonsymmetric solutions. It is sufficient to
consider ¢ > 0. Taking into account (4), the parameter domain is

(8) D = {(a,b,¢),a(b—1) > 0,c > 0}.
We begin our study by determining the equilibrium points of (7). Under the assumption (8), there
exists a unique symmetric equilibrium point eg = (0,0,0,0). Nonsymmetric equilibrium points are
b— b—
€1 = (_%71; _% - @a _1) , €2 = (_% — ¢ 1);_1; _%71) ) €34 = (pa_#a _QP%) #) ’ where

p satisfies the equation

c alb—1)
(9) C+2p+1+ b1 =0,
or, equivalently
(10)  2cp*+ (2p+1)[2c+a(b—1)]=0.

Note that nonsymmetric equilibria exist only for ¢ # 0.




190

As the discriminant of equation (10) is a (b —1) [2¢+a (b —1)] and it is always positive in D, it
follows that system (7) has four nonsymmetric equilibria for any (a,b, c) € D, ¢ # 0. The Jacobi matrix
of system (7) can be written in the form

—ag(v1)+c¢ —alb+h(u,v)—2] —c 0
J g (v1) h(up,v1) —1 0 0
—c 0 —ag(v2)+c¢ —alb+h(uz,v3)—2] |’
0 0 g (v2) h (uz,v2) — 1

with g (v) = (1+v)” and h (u,0) =2 (uw+1) (v + 1).
3. THE SYMMETRIC EQUILIBRIUM POINT €q

The Jacobi matrix of the linearization of (7) around eg is

—a+c —ab —c 0
1 1 0 0

T (eo) = —c 0 —-a+c —ab
0 0 1 1

and the corresponding characteristic equation reads

N +Aa—D)+a®-1][N+A(a—2c—1)+a(b—1)+2c] =0.

Thus, the four eigenvalues of J (eg) come in two pairs: Aj 2 satisfy (5), so they are eigenvalues for A in
the case of a single model, while A3 4 satisfy

(1) XM+ A(a—2c—1)+a(b—1)+2c=0.

Note that for ¢ = 0 equation (11) becomes (5). In this case, Ay = A3z, A2 = A4 and the corresponding
eigenvectors are lying in the invariant subspace S.

The equilibrium eq is nonhyperbolic if one of the eigenvalues \;, i = 1,4, has a zero real part. Since
in D we have

a(b—1)>0, 2c+a(b—1)>0,

it follows that equations (5), (11) have no zero solution. Hence, the equilibrium eg may be nonhyperbolic
only if (5) or (11) have a pair of pure imaginary solution, that is in one of the following situations:

(1) ¢e=0,a=1, b> 1; for these values eg has two pairs of pure imaginary eigenvalues A\; = A3 =
—Xo = —Ag = iv/b— 1. Taking into account the form of J (eg), it follows that the parameters
situated on the curve Hy (fig.2a) in the ¢ = 0 plane may correspond to Dy— symmetric Hopf
bifurcation [2], [3].

(2) ¢#0,a=1,b> 1; for these values A\ = —X2 = iv/b— 1, Reds-Re\s # 0. It follows that the
parameters (a, b) situated on the curve Hy : a = 1, b > 1, in the plane ¢ = const. (fig. 2b), may
correspond to a Hopf bifurcation.

(3) ¢ #0,a =2c+1, a(b—1) + 2¢ > 0; for these parameter values A3, \y are pure imaginary,
ReAi-Rely # 0. Thus, for the parameters (a, b) situated on the curve Hy : a = 2¢+ 1, (fig. 2b)
in a ¢ = const. plane may correspond to a Hopf bifurcation.

4. THE NONSYMMETRIC EQUILIBRIUM POINTS e1 2

The Jabobi matrix of the linearization of (7) around the equilibrium e; reads

c—4a —ab —c 0
4 1 0 0

Tler) = —c 0 ¢ —a(b—-2)
0 0 0 -1

and the corresponding characteristic equation is
(12) (A +1) [N =X (2c —4a + 1) + 2X (¢ — 2ac + 2ab — 2a) — 4ac (b —1)] = 0.
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FIGURE 2. (a) The curve Hy of possible symmetric Hopf bifurcations values, for ¢ = 0;
(b) The curves Hy, Hy of parameters for which e is nonhyperbolic, for ¢ > 0.

F1GuRrE 3. The surface Hy of parameter values for which e; » are nonhyperbolic.

It follows that Ay = —1 and s, A3, A4 satisfy

(13) AN = A2 (2c—4a+ 1) + 2X (¢ — 2ac + 2ab — 2a) — 4ac(b—1) = 0.

Thus, AaAsAs = 0 only if ac(b — 1) = 0. Since by our assumption (8) ac(b— 1) # 0, it follows that (12)

has no zero solutions. Hence, the equilibrium e; may be nonhyperbolic only if (13) has a pair of pure

imaginary solutions, say Az, Az. In such a case, from Ay + A3 + Ay = 2¢ — 4a + 1 we obtain
AM=2c—4a+1

and from A3\ = 4ac(b — 1), it follows

dac(b—1)

— > 0.

2c—4a+1 >

Taking into account that Ay(A2 + A3) + AaAs = 2(c — 2ac + 2ab — 2a), we finally obtain the conditions
for which e; has a pair of pure imaginary eigenvalues:

A2Ag =

2c—4a+1

dac(b—1) _ 2(c — 2ac + 2ab — 2a)
(14)
2c—4a+1>0

This takes place for parameters situated on the surface (fig. 3)

2c—4a+1)(2a—-1) 0<a<2c+1
2a(c —4a+1) ’

Sections with planes ¢ = const. in the surface Hs are represented in fig. 4 and are denoted by Hs, too.
Of course, only the branches of Hy with b > 1 must be considered. As the Jacobi matrix corresponding

Hy =14
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FIGURE 4. The curve H, of parameter values for which e; » are nonhyperbolic.

1
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to ey is
¢ —ab-2) —c 0
0 -1 0 0
J(e2) = —c 0 c—4a —ab |’
0 0 4 1

the characteristic equation is also (12). Thus, if (14) holds, both e; and es are Hopf singularities
(degenerated or not).

5. THE NONSYMMETRIC EQUILIBRIUM POINTS e3 4

For the equilibrium points ez 4 we have: 14+u; =14+p, 1+v; = #, 14+uy = 2’;%11, 14wy = Q;T-i—ll‘
Taking into account (9) and (10), the Jacobi matrix J corresponding to es 4 has the form
2c
=D T —ab —c 0
By erE=y 0 0
J = o .
(es.4) —c o et (:f;rl) +c —ab
2c(2p+1)
0 0 -Zetny !

The corresponding characteristic equation is written as

(15)  A* = AN+ A\ — Azd+ Ay =0,

where:
Ay = —b_il(—b—2a+3c—cb+2ab+1);
A, = —ﬁ(l — 8a — 2b+ 12¢ — 20cb + 8abe + 8¢* + b* + 4ab®
—4ac — 16ab® + 20ab — 4¢*b — dab’c + 8cb®);
Ay = —ﬁ (—3c + dac + 3cb — 8¢ + 2a — 6abc + 2¢2b + 2ab* — 4ab + 2ab20) ;
Ay = defa(b-1)+2(].

Since Ay > 0 for (a,b,c) € D, ¢ # 0, it follows X\; # 0, i = 1,4. Therefore, the equilibria e3 4 may be
nonhyperbolic only if (15) has a pair of pure imaginary solutions.
The conditions for the existence of a single pair of pure imaginary eigenvalues are

Ay Ay A
(16) Al#O,A—1>O,A—1+A4A—3—AQ
or
(17) A1 =0,A5 =0,A; <0.

Conditions (17) are not fulfilled for parameters in D.
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Equation (15) has two pairs of pure imaginary solutions if
(18) A1 =0,A3=0,A2>0,A4 >0.
Denote by Hj the set of parameters (a, b, ¢) € D satisfying
(A3)? + (A1)? Ay = A1 A A

Hence the parameter values satisfying conditions (16), or (18) are situated on the surface Hs. For a
fixed ¢, conditions (16) are fulfilled for (a, b) situated on a curve Hs, while (18) are satisfied for at most
three points of the curve Hs.

This paper is a first step in the study of coupled advertising models.

We have determined the equilibrium points for two coupled identical advertising models and we have
identified the parameter values for which this system possesses nonhyperbolic equilibria.

Our study will continue in two directions. First we shall investigate the bifurcations and the dynamic
behavior determined by the presence of nonhyperbolic equilibria. Second, we intend to perform a similar
study for two coupled nonidentical advertising models.
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During the latest decade the volume of solid waste generation has essentially increased. This fact is
connected with the abrupt consumption rise, which is observed in industrial countries. At present the
flow mass of solid waste, which annually is forthcoming into biosphere, has reached almost geological
scale and amounts approximately 400 million tons per year [1]. All growing quantity of waste products
has a sharp effect on global geochemical cycles of a lot of elements containing organic chemistry, in
particular organic carbon. So, the weight of this element, forthcoming into an environment with waste
products, makes approximately 85 million tones per one year while the general natural inflow of carbon
into a soil cover of a planet makes only 41.4 million tons per one year.

One of the basic ways of solid waste removal all over the world remains its burial in the near-
surface geological environment. In these conditions waste products are exposed to intensive biochemical
decomposition which causes in particular landfill gas generation. The issues of biogas forthcoming into
the natural environment form negative effects of both local and global character.

The quantity of the evolved biogas, and also the speed of the gas generation process are determined
by the conditions of the environment which have been usual in concrete dump body. The humidity,
temperature, composition of organic fractions concern the number of parameters rendering essential
influence on decomposition of organic chemistry. Their complex influence is reflected in the following
kinetics equation of the first order for the gas generation reaction [1]

1) Q= Mg ™

Q — quantity of biogas (m?), formed in time ¢ (years);

M — weight of waste products (t);

q — specific gas potential (m?/t);

k — a constant of speed of gas generation reaction (1/year).

In practice, various modifications of the formula (1) are applied for the forecasting of gas generation.
Their basic distinction is reduced to the quantity of fractions of the solid waste organic substance
included into consideration. These fractions essentially differ in their physical-chemical properties and
terms of biochemical disintegration. So, “fast” fractions decay during 2-4 years, and the slower ones -
during decades.

In work [2] the mathematical equation for an estimation of issue of biogas in England, for the period
from 1970 till 2000 is given. It is based on the model of National Physical Laboratory (NPL). Given
model allows carrying out an estimation of issue of biogas depending on the row of the determining
factors.

In the present paper the mathematical model and the computer program of process of decomposition
of organic chemistry and of biogas formation is yielded. From the mathematical point of view it
represents a system of partial differential equations. The given model allows us to take into account
the key parameters influencing the gas capacity and to carry out the forecasting and monitoring of
mentioned processes.

Various research organizations in many countries of the world are actively engaged in the search of
alternative sources of energy. There are many nonconventional energy sources: solar, wind, the heat of
underground sources, the tidal energy in the seas and oceans etc. An energy source of anthropogenous
character is of great importance now. It is the biogas received from organic components of household
waste. By various expert estimations the organic components make ~ 70% of all waste products. Thus,
usual dumps of waste are the powerful biological reactors capable to make the valuable energy carrier
— biogas — within decades.
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Practically in all industrially advanced countries, and also in many developing ones there are national
programs of getting the biogas as a result of decomposition of organic substances and its further use.

In the paper we make an attempt to describe the influence of temperature, humidity, density and
other parameters on the process of decomposition of organic chemistry by methods of mathematical
modeling.

In many countries of the world the interest to biogas usage has increased in connection with the
increase of prices for energy carriers. The biogas is formed of organic constituents of waste products at
their decomposition by microorganisms. The process of decomposition proceeds in two stages: in the
presence of oxygen the process is aerobic, and after an exhaustion of oxygen in deeper layers (oxygen-
free) the anaerobic stage begins. The biogas evolved by microorganisms contains ~ 60% of methane
and may be used on a place as low-calorie fuel, or may be processed into high-calorific gas and used for
needs of gas supply.

Positive experience on biogas creation and use is received in many countries of the world. So, in USA
the general number of municipal dumps has increased from 19.000 in 1985 up to 23.000 in 1995, thus the
share of dumps with the tonnage of waste more than 1 million tons has increased from 9% up to 23%.
This is essential from the point of view of economy of biogas usage. The computations of the economic
efficiency of biogas usage carried out in 1982 for dumps with various volumes of stored waste, show
that for volumes more than 1 million tons the use of biogas becomes profitable. In Moldova, taking
into account the lower wages of workers and the world prices for gas, it is economically expedient to
maintain dumps with the smaller contents of waste products.

The mathematical model constructed on the basis of the factors influencing on the decomposition
of organic chemistry and on manufacture of biogas allows us to carry out necessary calculations and
to predict behaviour of the modeled system. The values for initial and boundary conditions of basic
modeled parameters are obtained experimentally at Academy of the municipal Services of a name of
K.D.Pamfilov. As a result of the carried out experimental researches and the subsequent laboratory
processing the functional dependencies of changes of humidity and ash content along depth, the contents
of organic chemistry, density, and also values of heat conductivity and a thermal capacity of samples
in a damp and dry condition are obtained.

As the researches show, the biogas spreads in the thickness of the stored waste products mainly in
the horizontal direction (at presence of insulating layers). The exit (or issue) of biogas from a surface
into atmosphere is determined by a number of factors. If the top layer of a dump is insufficiently dense
then the evolved gas is mixed up with atmospheric air. At good condensation or at presence of a tight
covering of a surface the biogas is concentrated and evolved basically on slopes and on the limited sites
of a surface.

Two kinds of degassing of dumps are applied to practical use of biogas:

1. passive degassing which is carried out due to the own pressure available in thickness of a dump;
2. active degassing which is carried out with the help of special devices for extraction of gas.

Passive degassing is seldom applied to get biogas because of its low efficiency. The increased require-
ments for prevention of uncontrollable issue of gas into an atmosphere are made to the means of active
degassing.

The basic results received at modeling of conditions, arising on solid waste landfills are presented
below. One of the advantages of mathematical modeling methods consists in the fact that we may
define the influence of one parameter, having fixed the others. At the given stage of researches the
influence of the following factors is investigated:

e contents of organic chemistry in waste products;
e quantity of humidity;
e influence of seasonal difference of temperatures.

The investigations were carried out by using accessible experimental data received basically from the
landfill Brateevo, Moscow. For forecasting the speed of decomposition of organic components at other
landfills it is necessary to have the appropriate experimental material.

Besides, it is necessary to model the natural conditions arising during the waste products storage.
In addition, the seasonal changes of temperature are to be considered. For simplicity the harmonious
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fluctuations in limits from T}, up to Tpyaz, i.e. the minimal were used and maximal values of temper-
atures in the summer and in the winter time. The constant ambient temperature 12°C' exists at the
lower bound.

The distribution of temperature, which arises in a real ground without sources of heat, was accepted
in the model as the initial one. Additional experimental data can be used as starting conditions for
the problem of heat conductivity. We note that the only effect on the solution concernes the terms of
establishment of a temperature mode and the initial speed of ageing of a dump.

In order to study the temperature fields at the given stage of researches the modeling variant which
is taking into account the lamination of environment, the action of heat sources and the dependence of
temperature conductivity factor of the environment from humidity was selected.

The purpose of the present paper is the computation of the distribution of temperature along the
depth of the researched layer. For the description of the process of heat distribution the equation of
heat conductivity

oT 0 oT
@ G- (D3 e,

is used.

This equation is of parabolic type and if dependencies A(T") and Q(z) are known, then it is possible
to solve the equation (2) numerically. Parameters A\(T") and @Q(z) are the functional dependencies on
temperature, humidity and other parameters of environment. They may be obtained by numerical
approximation of experimental data.

Initial and boundary conditions. The initial conditions of the problem consist of the given
distribution of temperature at an initial period of time ¢t = 0

(3)  T(z,0) ="To(2)
and through distribution of humidity:
4)  W(z,0) =Wo(2).

In practice, naturally, it is difficult to define experimentally the functions To(z) or Wy(z) way at
the moment the investigated layer has been initiated, or at any other moment of time. However, the
requirements of the mathematical methods, are not too strict from the given point of view. As we
shall see, after several iterations the solution is got with required accuracy even if functions do not
correspond to conditions of uniformity of environment.

The situation is complicate a little bit in the case of lamination of environment. The iterative process
converges in this case too. However, to get necessary accuracy more iterations one needs. As boundary
conditions the conditions of 1-st, 2-nd or 3-rd sort may be used. From the physical point of view the
boundary conditions of 2-nd sort are more correct as they describe behaviour of a stream of heat on
the boundaries. This is supposed to be proportional to the difference of temperatures

or
(5) a—hl(T—TC),z—O

(6) Z_Z:hQ(T_TZ),Z:l,
where T, and T, are the ambient temperatures of this layer.

The model (2) - (6) represents the initial-boundary value problem for a partial differential equation.
Its solution may be determined by a method of finite differences. The decision is searched in area
R: {0 < z<l,t>0} with the initial and boundary conditions (4) - (6).

The part of the results, obtained by computer experiments carried out with the constructed model,
is presented in fig. 1.

Fig.1.a shows the results of the computations which match the changes of temperature field depending
on time (in years). The contents of organic chemistry in the waste is equal to 800 kg/m3. The
temperature curve 1 corresponds to the depth of 5m, the curve 2 — to 10m, the curve 3 — to 15m.
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Fig.1.b shows the temperature dependence on depth. The contents of organic chemistry in the
waste is equal to 600 kg/m?®. The curves 1,2,3,4,5 are calculated for fall in 1, 2, 3, 10 and 20 years
correspondingly after modeling the starting.

B0.Q0 5 T

50.00 §0.00

2 50.00
40.00

40.00
30.00

20.00

20,00
20.00

v, -

10.00

g

2
=3
S
=3
=
w
o3
=3
hy
=3
o
=3

FIGURE 1
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Abstract. In order to approximate the function f :[0,00) — R, with |f(z)] < A-27
for © > 0, A. Lupag introduced in [8] the approximation operators

€ =23 Gk (1) w20
k=0
where (z)o =1, (2)p=2(z+1)...(z+k—1) for k > 1.

Our aim is to find a g - analogue of these operator.

1
n

-1
For g € C\{1}, let us denote by [n]q = q—l’ and for n € N

1 if n=0
[n]q!Z{mq[g]q_,_[n]q if n=1,2,..., "

)

gl I L RO
k|, 7 B g

The numbers [ Ll

q
Let g be an arbitrary complex number, ¢ # 1, and D = D, C C with the properties € D implies
gr € D.

] , 0 <k < n, are called Gaussian - coefficients.

Definition 1. A function f : D, — C is said to be q - differentiable, iff 0 € D,, implies that f'(0)
eTists.

Definition 2. A function f : Dy — C is sai to be q - differentiable of order n, iff 0 € Dy, implies that
FU(0) emists.

For a function f : D, — C which is ¢ - differentiable its ¢ - derivative D, f was defined in 1908 by
F.H. Jackson [6], in the following way

1) Daf)x) = 1D e,

(1-q)z
For instance:
D) =g T g

and the linear operator f — D, f satisfied the relations [2]

@) (Dofg)(x) = g(2)(Dy f)(2) + f(g2)(Dyg)().

(02 (£)) o) = 2D~ HEDuE) 1,0 1,

g g(z)g(qz)



In 1846 Heine [4] introduced the so - called ¢g-hypergeometric series

o0

(3) 2®1 (v, b5 ¢)y,0) = Z

k=0

< a;q >p< bq >k gk
< l;q >p< ¢ q >k

3

where the following notation is used [1]

1, n =0;
<aq>a={ 11 otk ;
[Ta-¢*), n=12..
k=0
[ee]
<aq>e= [[(1=g"), 0<lgl <1,
k=0
(a;q)oo = H(l - aqk)a 0< |q| <1,
k=0
1, n =0;
<aq >.=¢ 17 :
EnEY [Ia- e, n=12,.000
k=0
<a;q’ >e= [[(1—¢"™), 0< gl <1,
k=0
1, n =0;
) = et .
(aaq)n_ H(l_aqk]); n:1’2".‘ I
k=0
oo
(a;¢") 00 = H(l —ag"), 0< |q| < 1.
k=0
Starting with the identity
1 — (@)
@ goar = e = Rl bba), ol <1,
k=0
let @« = nz, x > 0. A. Lupag [8] considers the linear positive operators
B o~ (n@)k 4, (K
(5)  (Laf)@) = (1—a)”k§ () w20

with f:[0,00) = R, |f(z)| < e*. Further we use the notation eg(t) = 1, e;(t) =7, j = 1,2, .. ..

By imposing condition £,e; = e; we find a = % and Lupag operators (4) become

© @ = S (2) e20

n
k=0

In order to obtain a g - analogue of (6) let us remark that

o0 oo

<a;q >p< byg >k 4 <039 >k g
7 ®,(a, b:bl,,a) = ! a" = — 2" 20" =) ®g(a; —|,za
() 2 1( s Y |qa ) I§<1;q>k<b;q>k kz:;]<1;q>k 1 0( ) |Qa )

On the other hand, the following proposition is known

Theorem 3 (Heine [5]). For |a| < 1, 0 < |q| < 1, the identity

oo

< a;q >y aq®;q)
(8) Z ak _ ( )

= <Lig> (a:q)o0

holds.
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Letting ¢ — 1, formula (8) is reduces to formula (4).
Further, we consider the family of operators (L5 )(z), which depend on the a, ¢, parameters,
defined as follows

O @) = e S 2y (W),

(ag""; @)oo &= < 13q > [l

We calculate

L<a,q> — (a’ q)OO < NT;q > k[_q —
(L™ e @) (aq®; q) 2 <Lg>r [l

X k=1

(a; @) i [nalqna +1]g ... [nz+ k — l]qak[k]q —

(aq™; ) [n]q =1 [1q[2]g - - - [F]q

_ (a3 q)oo o [nx]q[nx—l—l]q...[n$+k]qak+1 _
(ag™*; q)so[n]q k=0 k]!

(s aoo nx+1 [n$+k] ok =

B (aq’”,q oo[n Z klq! -

_ _(83¢)ec[na]y a(aq"””+1;q)oo _l-gm 1
(aq";q)c[nlg (a:¢)s0 1—g" 1—agq™

We try to determine a = @ = a@(n) such that we have (L% e;)(z) = [z],. Because

1—qg™ 1
<a,q> —
(Lnaq el)(aj)_ l—q"al—aq"w’

1 _

we conclude with a = a = . Therefore (L% e;)(z) = [,

1+ gne [n]q

This suggest us to make the substitution ¢ ~» § = q%. This trick is frequently used in ¢ - Calculus
- ]+ rk
For this value of ¢ we find (L5%%eq)(z) = [z],, and [n]q" = [ﬁ] .
1

qgn q

2

In the following we put in evidence some approximation properties of operators

(L37 P)(@) = (L™ f)(x)

having the images
1 1
7t

> ~ > <n$,q% >5 1 ar
(10) ([' f)( ) ( qz 1) kZ:O < 13‘]% >4 (1+qz)kf <[n] i) .

T+ ") '
Since
k—1 ] k—1 1+]
1 1
<nz,qv >p=(1-g)* [az+—] . <1lgn >p=(1—g)F [—] :
( )]'1;[0 ", ( )jl;lo ",

let us denote

1 k—1 J
< nx,qn >p [m+ﬁ]q
(1) pnplg2r) = ———m— = || 7
n < Lq% > ]1;[0 [lﬂ
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The first ¢, x(¢;2), k=0,1,... are
eno(g:z) =1, ena(q; ) = [2]g, en2(giz) = [w]qﬁ,
q

Using notation (11) operators (£L39” f)(z) are defined by

1 1
T a4 00
1+¢” ) Pn.k (45 ) [k]
12) (L5 f)(x) = ( 0 KT e
(12) (5" HE) () = T
qr k=0 e
14 ¢~ oo
We continue with the definition given by (1), that is
f(z) — f(gz)

a0 = LG, geavy,
For ey (t) = t* it follows
(Dyer)(x) = [klger—1(z).
Makeing the following notation
1
halt) = o T T
we calculate
1
(Dyha)(@) = F=o5zlh(@) ~ haa)] =
_ 1 1 _ 1 _
C(1-q@a|(l—-a)-...-(1—ag® ) (1—aq)-...-(1—aq®)
_ 1 ) 1—-ag“—1+4a _1—q“_ 1
C(1—=q@a (1—-a)-...-(1—aq®) 1—-q¢ (1—a)-...-(1—aq®)’

that is

(13)  (Dgha)(a) = [a]ghat1(a),
to obtain the relation

(14) (Dﬁha)(a) = [a]y(Dgha+1)(a) = [a]g[a + 1] hat2(a).

h«(a) may be written as

— < a;q > k
ha = ———a".
(a) Z <lig>p"
k=0
We calculate
— < ;¢ > — < ;¢ >k
1 Dohy)a) =S 2297k p NS BTk o (a),
19 Orho)(@) = 2 ST De(@ = 3 T M1 (0
and
9 . > <oa;q >k
(16)  (Dgha)(a) = ; m[k]q[k — 1]sex—2(a)
From (14) and (16) we have
— < a;q > _
(A7) [aglalghata(a) = ; m[k]q[k — 1],a* 2.

But

(18) (K [k — 1], = 3(%}3 —[Kl,)
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Thus relation (17) becomes

1
+ 1],k = -
[a]q[a ]q at2(a) q . <1.q >n . <1.q>r

o0 o0

<a;q> _ <a;q> _
P e LD DE e (I M
k= k=

N <aq> N <aq>
ga*[a]gla + 1ghasa(a) = Y ==L kP2a* =Y =2 E k] ,a"
k= k=

< Lg > « <1Lg>p
therefore
o0
<Oé,q>k 2k 2 <qu>k k
—————[k]Za” = qa a+1], )+ qa’ -
> ST ior et = alahfa + hhasala de

On the other hand, from (13) and (15) we have
1 oo

<a;q >k
al hg a:—E _—
[osfar1(a) a &= < 15g >y

[k]qak-
In order to demonstrate that

(19) 30 TRk = galayfa + hasola) +alo b (@)

Starting with the formula the operator considered in relation (9), we calculate it for the e, function.
The operator becomes

(L)) = (e S S (1) 0

a
(a0 @)oo 7= < Lig>k  \I[ng
_ ga’[a]y[a + 1ghata(a) + ala]yhata(a) _ ala]q aglo + 1]q +1] =
ha(a)[n]2 (1 —aq*)[n]Z [1— ag>™!
_ afoly(aglo + 1y +1—ag™) _alaly(1 + aglal,)
(1 —ag®)(1 — ag**!)[nfj (1 —ag*)(1 = ag**")[nf3
Replacing in the above relation a =a = and a = nz we obtain
+ q’ﬂﬁ
<a,q> _ < > (14" +q[nx]y)
(Lna e 62)(37) - 5 q" nz+1 1 + gne — qnw-i-l) o
[n]q 1- 1 + qnac 1 + qnac
B (1 _ qnm) (1 —q+ qnac _ qnac—i-l +q— qnac—i-l) B (1 _ qnm) (1 + qnm _ Qqnw—i-l)
B (1—=¢")2(1 + ¢ — gnotl) T (=g (L +gnT —gnatt)

Replacing ¢ by g = q% we obtain successively

(1—g¢) (1+¢" —2¢"7 L], (1+q7)
(L377e)(x) = ( ; ) = [2]; + [x]q[n]q—l "= Jalp
(1-¢?(1+¢" —q" ) 1+¢" — ¢
In (12) it is supposed that f :[0,00) = R, ¢ € (0,1), z € [0,00). Let us remark that
lim LS f = Lof,

n—o00,¢<1

where L, f is the Lupag operator. According to Heine’s identity the series from the right-hand side of
(12) is convergent if

(200 [f(@)] < A1 +¢")", with A= A(f).

Condition (20) guarantees us the convergence of (12) series. Thus, we proved the following proposition
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Lemma 4. Let eg(t) =1, €;(t) =tI, j =1,2,.... If L39 f is defined by (12), then

(L3%ej) (@) = ej([z]y) for je€{0,1},
(21) lim (£59es)(x) = ea([z],) for all z > 0.

n—oo
Moreover, (21) holds uniformly on any interval [0, M| with M > 0.
Theorem 5 (P.P. Korovkin). [7] If li_>m (Lej)(z) =27, j=0,1,2 then

n oo

Tim (£f)() = f(2).
for f continuous on [0, M], M > 0.
Theorem 6 (A. Lupas). [9] If ILm (Lej)(z) = [p(z)), j = 0,1,2 then

lim (Lf)(z) = f(e(2)),
n—oo
for f continuos on [0, M], M > 0.
Using Theorem 6 it follows that the following proposition holds

Theorem 7. Let f : [0,00) = R, |f(z)] < AQ+¢")*, A= A(f) >0, f € C[0,M], with M > 0. If
L9 are linear positive operators defined as in (12), then

Jim (£59% )(@) = f(la)
uniformly on [0, M].
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The query databases given by relation algebra
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Relational algebra is a theoretical language which can constitute a go-off in understand elemental
things to querry databases.

Before to generated a querry of datebases in a relational language must review a phase of analysis, for
the determination attributes results, connections between tabels and restriction what must respected.

The operations throught informations are processing can bring togheter in a strategy for a correct
execution what can put efficient by relational algebra.

The algebraic relational language contains five operation fundamentally - selection, projection, prod-
uct cartesian, reunion and difference - which accomplish most operations to find records which interest
us. On near these, exist another operations, such as: union, intersection and divizion. These can be
the exprimates by five fundamental operation.

Specify the relational algebras are single operators of restriction, which permit a offcut relation, on
horizontal line: SELECTION and on sheer PROJECTION and binary operators of extension: JOIN
and DIVISION.

SELECTION sort in table only the records what satisfy a condition named among predicate. Of a
selection relation R, condition F, whith notation SF( R), he can be define:

SF R |[record t|t R andF(t) true

A ordinary notation is: R;+ SELECTION(R; < boolean expresion >, but for the sake of
sciences will detail:

oR is the relation R( Aj, As... A,,) above is applied the selection and were A; are his attribute.

e Ry is new relation obtained abaft selections, will have same relational schema with R— Ry (A1, Aa., Ay).

e < boolean  expresion >can be writed more analytic thus: < boolean  expresion > =(term;)
and/or (terms)

and/or (termy), where term ;= expresion; § expresion,, where expresion; or expresion, are calculating

expression departing from the attribute A; of relations and € can be one of the operators for com-
paration.

To illustrate the way wherewith is given the querry of database, there exist sufficient situations
informationale using relational algebra. To demonstrate this we will depart from the following structure
of databases:

LOCALITATI {CodPost, Loc, Jud}

CLIENTI {CodCl, DenCl, CodFiscal, Adresa, Telefon}

PRODUSE { CodPr, DenPr, UM, Grupa, ProcTVA}

FACTURI {NrFact, DataFact, CodCl, Obs}

LINIIFACT{ NrFact, Linie, CodPr, Cantitate, PretUnit}

To put toghether all this, we discuss following situation: Which are the insurance invoices in period:
15-23 april 20037

First of all is identified in database table from which is extracted the result. And then established
the attribute above applied the predicate of selection. Table in which will operate is FACTURI. The
predicate of selection using the attribute Datafact:

Ry «+ SELECTIE(FACTURI; Datafact >=15/04/2003 AND Datafact >= 23/04/2003)

Is obtained this solution:

Through PROJECTION, a relation can be cut on vertical. If selection extracts in a table certain
records, base on the conditions verify by one of this attribute values, projection permits the selection
into table only fields desirable.

Formal, there is a relation R(A;, As, .., A,,). Projection relations R about more attributes is a relation
which is obtained after running two steps:

a) the elimination among attribute A; those don’t specified;
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FIGURE 2

b) the suppression dual record (identical recording).

We note: R;+ PROJECTION(R; AjLA A)

As opposed to R, relations R; is composed only from adequate attribute: Ri(A4;, Ak, ..., 4;). If
extraction don’t fiind identical records, R; have same number of line as the relation R. In contrary
case, its number of line is less, depending on the number of duals records.

To illustrate the way how relation algebra determins the query of database choose for exemple, we
tries to answer at folowing questions: What are cod, name, phone number of each custom? and What
is phone number of custom SC Alfa?

Table what interest us is CLIENTI, from which it cut out three column: Codcl, Dencl and Telefon.

R+ PROJECTION(CLIENTTI; CodCl, DenCl, Telefon)

For second situation, whith the aid of selections are cut out from table CLIENTI only the proper
record for customer solicits.It is obtained a new table and about it is applied a projection, because
interest us only the field in which is the call number. Through relational algebra are given the following
relations which indicate the enchainmment a selection with a projection.

R;+ PROJECTION(CLIENTI; DenCl = SCAIlfa”)
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R+ PROJECTION(R,, Telefon)

The result obtained is a query which cointains the right answer in a new table.

JUNCTION is the derivative operator which replaces the cartesian product because that couldn’t
be used alone in queries.

If cartesian product is an unconditional fusion between two tables of a database, junction represents
the fusion a two tables which have a common property. There are two relations denoted by with:
Ry (A1, As, ..., Ay) and Ry(By, Bo, ..., By). There are A; and B; two attribute define on same area, and
6 the ensemble comparative operators {=,>, <,?,=,=} what could be applied on two attributs A; and
B;.

JUNCTION of the relation Ry, throught A;, whith relation R, throught B; denoteed by: R1(A;6B;)
R, is the relation whom records are obtained concatenating each record of relation R; whith records of
R», if it is checked condition 6 established between A; and B;. Ry (A4;6B;) R2 = |t|t R, R, andt(A;)TtB,

Junction presents a different importance for the enquiry databases because permits the recomposition
of the original relation. The relational model is banked on the split databases in relation, so that the
level of date redudancy and problems for the update tables is minimized. Most many querries, work
with date and predicate simultaneously apply to attributes from two or many tables.

Forwards we will try demonstrates the utility junction throught a example. In what localities it sold
the product” XXX” in period 15-23 April 20037

One from the classic questions for the verification ways in were undestand junction or not, is : How
much line has result-tabela of junction? In case of a BDR the answer is: how much line has main-table.

Answered is correct only when is respecte the referential integrity, thus saied, only when all the values
foreign key are find in main-table.

Result relation must contains the values of attributes Localitate from table LOCALITATII. The
predicate of selection is applied only that in another two tables: PRODUSE, in which Denpr =” XXX”
and FACTURI whom records must let us verify the condition: Datafact >;= 15/04/2003 AND Datafact
>= 23/04/2003).

R+ SELECTION (PRODUSE; DenPr = XXX")

R+ JUNCTION (R1,LINIIFACT; CodPr = XX X”)

R;+ PROJECTION (R,; NrFact)

R4+ SELECTION (FACTURI;Datafact >= 15/04/2003AN D Data fact >= 23/04/2003)

R;+ JUNCTION (R,,R ; NrFact)

R+ JUNCTION (R;CLIENTI;CodCl)

R7+ PROJECTION (R;; CodPost)

Rs<+ JUNCTION (R,,LOCALITATI; CodPost)

DIVISION is most complex and more difficult to explain among operators discuss in this paper.

Codd imagined it as an inverse operator of cartesian product. For they define, started from two relations
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R1(X,Y) and Ro(Y); first relation has two attribute or group of attribute, note X and Y, as the second
only the attribute or group of attribute note with Y(define on same area as in relation R;). A first
restriction: Ra(Y), be the numerator of division, is not empty.

Relational DIDIVISION R; + R, has as output a relation define as the ensemble records Ry (X)
for which their cartesian product with R»(Y) it is a module of R1(X,Y).

Result expressions R; +~ R» represent the division quotient, be a relation what can be note R3(X).
In another formulation, X; € R3 if and only if Vy; € Y € Ry — 3(x;,v:) € Ry.

Relational DIVISION is dissimilar to useful for the formulation queries in which appears the clause”
either be” or ” for all”. In this context, let discuss next example: What are the customers for which
exist one invoice issue every day?

In another formulation, interest us customers which bought somethings in all days in which they
accomplished the sales. Then, the quotient will be a table with an alone attribute Dencl, and the
divider will be a relation composed only one attribute Datafact. If it is respected the model require
of relational algebra, can note: Rz(DenCl), Rs(DataFact). Knowing the structure of quotient and
divider, can determine the structure of dividend-table: R;(DenCl, DataFact) that is tabela will contain
the names customers and the days in which exist one little an invoice for the respective customer.

Solution can be reproduce in next steps:

- build the divided-relation:

R <+ JUNCTION (FACTURI, CLIENTI;CodCl)

R+ PROJECTION (R,; DenCl, DataFact)

- build the nominator-relation:

R, PROJECTION (FACTURI,; DataFact)

- the result is: R3 + R; ~ R»

Scheme and contained of relations involve in this solution are presented below:

Thence, relational algebra consist in operation which react on one or more relations for define an
another relation, without modifications for initial relation. Thus as, as much the operands and result are
relations, so that come out of an operation become the entrance for an another. This permits expressions
in relational algebra, exactly in same way in which is done enchaing mathematical operations, what
facilitates diverse methods wherewith interrogate the database.
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Abstract. For large scale transport problems in groundwater, the methods which
track particles to simulate concentrations are successfully used, mainly when the
aquifer properties are spatially heterogeneous. These methods are not concerned with
numerical diffusion, occurring in finite difference/element schemes. The limitations
are only due to large computation time and memory necessary to achieve statistically
reliable results and accurate concentration fields. To overcome these computational
limitations we use the new “global random walk” algorithm which produces stable
and statistically reliable simulations and enables us to investigate the large time be-
havior of the effective diffusion coefficients, the concentration fluctuations and the
thermodynamic equilibrium.

1. INTRODUCTION

The solute transport in groundwater is governed by the high space variability of the geological for-
mations. It was shown that at relatively homogeneous small scales the displacement of the solute
molecules can be described by It6 stochastic equations. At a larger scale where Darcy law applies,
heuristic justifications were also given for the validity of an Itd equation which plays an important role
in explaining the “ macrodispersion” and the scale effect [Bhattacharya and Gupta, 1979]. Correspond-
ingly, the behavior of the normalized concentration is described by an advection-diffusion equation (the
Fokker-Planck equation), i.e. an Eulerian description of the transport process can be introduced. It is
worth noticing that the Itd equation, which describes the movements of the molecules at Darcy scale,
does not correspond to the usual “ Lagrangian” picture in hydrogeological literature. There [see, e.g.
Dagan, 1989], the approach based on the Lagrangian coordinate system, borrowed from the theory of
turbulent diffusion [Lundgren and Pointin, 1974], is completed with a diffusive movement of the fluid
particles. But the trajectories of a diffusion process are not reversible and there is no transformation
from Lagrangian to Eulerian coordinates [Lundgren, 1981], thus the fluid particle is not defined. In this
respect, the use of fluid particles and “ sub-particles” carrying the solute concentration is conceptually
wrong.

The heterogeneity of the aquifer properties is described by random space functions, using geostatis-
tical parameters derived from field measurements. The stochastic analysis of transport aims to check
the existence of a upscaled effective advection-diffusion equation for mean concentration field and to
quantify the concentration fluctuations [Kapoor and Gelhar 1994]. Both the Lagrangian and the Euler-
ian approaches require further approximations and simplifications and the results are not always in
agreement. Some controversial questions and open problems are summarized in the following.

-The time necessary for diffusive behavior to take place corresponds to tens of heterogeneity cor-
relations lengths in 1-st order approximation [Dagan, 1989; Fiori, 1996] while in 2-nd order approach
and numerical simulations [Dentz et al., 2003; Schwarze et al., 2001] it was found to be of thousands
correlations lengths.

-In Lagrangian approach [Dagan, 1989; Fiori, 1996] the transverse effective diffusion coefficients
equal the local coefficients while in Eulerian approach [Gelhar and Axness, 1983] they are larger.

-Although there is a general agreement that after large travel times, when the solute plumes ex-
perience the heterogeneity of the aquifer, the ensemble averaged coefficients are relevant for single
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13

realizations of the aquifers, the meaning of this “ ergodic hypothesis” [Dagan, 1991] is not clear and no
direct verification of this occurrence was provided.

-The predictions for the long time behavior of the concentration coefficient of variation are different
in Lagrangian [Dagan and Fiori 1997] and Eulerian [Kapoor and Gelhar 1994; Kapoor and Kitanidis,
1998] theories and little is known about the existence of a thermodynamic equilibrium state of the
transport process.

In the present paper, we use a new formulation of the macrodispersion problem, based on It6 equation
[Suciu et al., 2002] to get more insight into the meaning of the effective coefficients and ergodicity.
Further, we make a direct investigation of the previously enumerated problems through a numerical
modeling of the two-dimensional transport. The numerical model benefits by the powerful algorithm
called “ global random walk” (GRW) [Vamos et al., 2003]. This new particles method scatters all
particles lying at a given grid point simultaneously. Unlike in usual random walk algorithms where
the trajectories of the particles are simulated individually and stored, the GRW provides the whole
concentration field at each time step and it is not concerned with limitations related to the number of
tracked particles.

2. STOCHASTIC DESCRIPTION OF TRANSPORT BASED ON ITO EQUATION

The trajectory X;(t), i = 1,2,3, of a solute molecule depends on three factors: the local dispersion
with constant coefficient D, described as a Wiener process w, the large scale variability of the velocity
field, described by a random field V, and the initial position x,.

For a given realization of the velocity field, the transport is described by the It6 equation

t t
Xi(t)=$0i+Ut+/ui(X( ))dt' + (2D %/dwl
0 0

where u =V — U, is a fluctuation around the mean velocity and U [Suciu et al., 2002].
The variance of the displacements of the molecule in a given realization of the velocity field is given by
o2 () =<[X;(t)— < Xi(t) >, >, <, s Where <--->_ - denotes the average over the realizations

of the local dispersion and over the 1n1t1a1 positions. From the properties of the Ité integral [Kloeden
and Platen, 1995], the effective coefficients Dfif F= tlim o2 (t)/(2t) can be written like
—o0 i

w,xq

(1) DY =D+ Dy — DI + My,

where

D" = lim [ (ui (X)) ui(X(8))) gy, dt's DE" = M [ (ui (X)) gy, (i (X)) gy, A2,
0 0

Mg = Jim (X (X(0) = (Xpi)y, (XD, )

are contributions due respectively to the fluctuations of the advective velocity, to the fluctuations of
the center of mass velocity, and to the cross correlation between X ; and u;. The last term, M;;, which
is non-vanishing for extended initial plumes, is not accounted for in usual Lagrangian approaches.
The average over the realizations of the random velocity field < D;f s >, cancels the contribution
of M;; and from (1) we obtain < DY > =D + < D% > — < Dim >
The “ergodic hypothesis” [Dagan, 1989],

(2) DT =D + <Dy >,

assumes not only that the effective coefficients in a given realization equal their estimations, but also
that < D§™ >, = 0. There are no theoretical proofs for the occurrence described by (2).

For mean flow U along the longitudinal axis z, finite correlation length, A,, and small standard
deviations, o, of the logarithm of the hydraulic conductivity, y, Dagan [1989] obtained, in first order
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approximations of flow and transport,
3) D/ =D+Ua2), D5}/ =D}/ =D.

Gelhar and Axness [1983] found transverse coefficients greater than D, i.e. non-vanishing values for
< Dgdv > .

3. THE GLOBAL RANDOM WALK ALGORITHM

The one-dimensional GRW algorithm describes the scattering of the n(i, k) particles from (z;, t) by

n(j,k) = 6n(j, j, k) + 6n(j +v; — d, j, k) + 6n(j +v; + d, j, k) and n(i,k+1) = Y én(i, j, k),
j

where v; are discrete displacements in a given velocity field, d describes the diffusive jumps, and

on(j +v; £d,j, k) are random variables with Bernoulli distribution. The diffusion coefficient D is

related to the grid steps through D = r(ddz)?/(26t), where r < 1 is the ration of particles undergoing

jumps. For two and three-dimensional cases, the same procedure is repeated for all space directions.
The “reduced fluctuations GRW algorithm” is defined by

. ) _ n/2 if n is even
on(j + v —d,j,k) = { [n/2]+6 ifnisodd ~’

where n = n(j, k) — dn(j,4, k), [n/2] is the integer part of n/2 and 6 is a variable taking the values 0
and 1 with probability 1/2.

The GRW algorithm does not yield numerical diffusion and converges as O(6z%) +O(1/v/N), i.e.
for large numbers of particles, N, the convergence order is O(dz?), the same as for finite differences
[Vamos et al., 2003].

4. TEMPORAL BEHAVIOR OF THE EFFECTIVE COEFFICIENTS

Two-dimensional velocity fields with constant mean U = 1 m/day, exponential correlated normal y,
with correlation length A, = 1 m and variance U; = 0.1, were generated using 640 Fourier modes by the
Kraichnan procedure (as in [Schwarze et al., 2001; Dentz et al. 2003]). The local dispersion coefficient
was chosen to be D = 0.01 m?/day, a typical value for transport in groundwater, all the particles were
initially located at the origin of the grid and the space and time steps were dz; = dzo = 0.25 m and
0t = 1 day. Similarly to [Roth and Hammel, 1996], “ overshoot errors” were corrected by replacing the
velocity with its average over a time step, V; = (V(x;) + V(z; + §tV(x;)))/2. In [Suciu et al., 2002]
it was shown that for large scale simulations and relatively coarse discretization the overshooting does
not affect the values of the effective coefficients and the shape of the plume. It was also checked that
the combination of transport parameters 0’; = 0.1 and D = 0.01 m?/day leads to symmetric plumes,
as they should be in first order approximations. The computations were conducted for dimensionless
times ¢/U A, corresponding to 5000 correlation lengths, using the reduced fluctuations GRW algorithm.
Because the stochastic description in Section 2, as well as the usual Lagrangian approach, are given for
unbounded domains, the grid was chosen to be larger than the maximum extension of the plume.

The convergence of simulations for a given realization of the velocity field requires at least N = 10*°
particles (Fig. 1). Large ensembles of realizations were computed on a parallel machine Cray T3E.
The stochastic convergence of ensemble averages requires S = 2500 realizations of the velocity field
(Fig. 2). While the convergence of the ensemble averages (more precisely, of the advective coefficients
< D& >_) was obtained in the past, for tens of correlation lengths, the convergence of large scale
transport simulation in given realizations of the velocity field is a new result, for the first time presented
here.
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The longitudinal coefficients are of the same order as predicted by the first order approximation (3)
but the ergodic behavior does not occur (the contribution of the center of mass, < D$7* >, does not
vanish), not even for mild variable velocity fields and over thousands correlations lengths (Fig. 3). The
ergodicity of the transverse coefficients can be expected to occur at travel times orders of magnitude
larger than in first order theory and their asymptotic values are larger than D (Fig. 4).

5. CONCENTRATION FLUCTUATIONS AND DILUTION

The normalized concentration is the probability density of molecules moving on the trajectories
X (t,x,) of the transport process described in Section 2 and it is given by the general definition ¢(x,t) =
(0(x — X (t,%x,))) [van Kampen, 1981]. The average of the concentration over the realizations of

the velocity field can be written

(@ felat), = (x-X@Ex)),, ) = /v (B = X (1,x,))), , olx,)ax,.

w,x

where V) is the domain occupied by the initial plume and ¢(x,) is the initial concentration field. The
average of the square concentration is

Ga) (Poe0), = [ [ (06X (x), (= X (txe2),), el pi,
(5.0) =[] G5t X (k)= X (2], sl

(5.0) = [ bt 05, Ol e
Vo 4 Vo

where (5.a) and (5.b) are identical because the trajectories of the Wiener process starting in two different
points x,1 and x,» are independent and the function p in (5.c) is a joint density (sometimes called “
two particles probability density” [see e.g. Dagan and Fiori, 1997]). From (4) and (5), the variance of
the concentration is 02 = <02(x,t)>v - ((c(x,t))v)Q. In the Lagrangian approach [Dagan and Fiori,
1997] first order results are provided, for which probability density factorizes, p = p,, p,,, and both
py, and p_ are Gaussian. In the Eulerian approach [Kapoor and Gelhar, 1994, Kapoor and Kitanidis,
1998], 02 is derived by taking the moments of an advection-diffusion equation supposed to be valid at
the Darcy scale and using closure relations to describe the macrodispersion.

The concentration statistics is described by the variance o2, the concentration coefficient of variation
CV = 0./ (c(x,1)),,, computed at the plume center of mass, and the global variance (the integral of o7
over the solute plume). The dilution of the contaminant solute is described by the “ dilution index” E
[Kapoor and Kitanidis, 1998],

6) E=exp <— / c(x,t) 1nc(x,t)dx> ,

where the expression under the exponential is the entropy of the process and the integral extends over
the entire problem domain. The risk of contamination in a given aquifer should also be quantified by
the space mean concentration and variance [Kapoor and Gelhar, 1994]. Additionally, the averages over
the realizations of the velocity field account for the incertitude of the space means.

Besides the point source case from previous section, we simulated the two-dimensional transport
for extended initial plumes, with and without local dispersion, and the transport in a confined aquifer
(for initial plume uniformly distributed over the vertical direction and no flux at upper and lower
boundaries, similar to [Kapoor and Kitanidis, 1998]). In all computations the initial plume contained
10'0 particles and the concentration was computed as the relative number of particles in a square meter.
Space statistics were inferred from averages over the transverse dimension of the computation domain
and averages over 500 realizations of the velocity were used to estimate the ensemble averages.

The results for unbounded domains from Fig. 5-7 are similar to ones published in the past and
underline the crucial role played by the local dispersion (unbounded increase of global variance an C'V
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in absence of local dispersion). Fig. 7 shows that the ensemble average alone (the points represented
by “4+”) underestimates the incertitude of the spatial distribution of the contaminant.
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The dilution index (6), normalized by Epax, corresponding to Gaussian distribution, for unbounded
domains, and Gaussian distribution on longitudinal direction and uniform on transverse direction, for
confined aquifer, is presented in Fig. 8. For both, the behavior is similar, towards E/FEn.x = 1
(occurrence which is called “ complete dilution” in [Kapoor and Kitanidis, 1998]), while in the absence
of a local dispersion mechanism there is no dilution. Fig. 9 and 10 show that for both boundary
problems the dilution index E is proportional to the apparent dimension of the plume o,,0,,. Since
the apparent plume behaves at large times as ~ ¢ for unbounded domains and as ~ t°-% for confined
aquifer, the observation of Pannone and Kitanidis [1999] that the results in [Dagan and Fiori, 1997] are
in variance with those in [Kapoor and Kitanidis, 1998] is not really surprising. The two results are not
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comparable because they are derived from different boundary problems. For both transport processes
there is no thermodynamic equilibrium, because the entropy increases unboundedly.
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Abstract. Abstract. A macroscopic model of water flow (transfer) along meandering
riverbed with discontinous and continous sloping influx of downpour waters has been
constructed. The resulted riverbed water discharge function is the solution for the
heterogeneous equation of telegraphic type having variable (in time) coefficients. The
physical analysis of the solutions showed that, having the minimum empirical data,
the proposed model allows us to carry out an estimation of the basic parameters of
the movement function of the wave water discharge along the riverbed with different
flow routines and distances.

At the last years, the interest for problems connected to environmental protection, rational utilization
of natural resources, as well as protection against catastrophic floods has suddenly increased in many
countries. This is because the scale of the dangerous consequences of the society’s irrational activities
and the global, inauspicious changes in the noosphere has been realized. One of these problems, the
meeting point of hydrodynamics, wave theory, mass heat transfer, hydraulics, hydrology, meteorology,
and other fundamental and applied sciences, is research of floods caused by catastrophic downpour
freshets. Solving this hydrological problem is very important to the national economy, as very often
the floods cause huge damages and human losses.

A macroscopic model of water flow (transfer) along a meandering riverbed with discontinuous and
continuous sloping influx of downpour waters has been constructed. During its construction, there have
been used only fundamental concepts inherent to different wave processes, and, first of all, characterizing
the kinematics of the process. These are: the (phase or group) wave speed, the extinction coefficient
(irreversible losses), the delay, the wave function (solving a telegraphic type equalization), and the
radial expansion along the discontinuous and continuous specter of water influx into the riverbed.
The minimum of basic notions from hydrology, hydraulics and hydromechanics are applied: stationary
(installed) and non-stationary (impulse) flow routines, riverbed section area, water consumption, sloping
influx, etc.

At the basis of this model lays the fundamental, and at the same time, the simplest principle, that
in proximity applies to different wave processes: if, in point ﬁ = Ry, the wave function describing
the substance movement is 1) (t), then in point ﬁ = ]?; this function is as follows: , where ¥;(t) ~
Yot —1)e ®1, 1 = fllo %,@1 = fllo a(l,t)dl; V(I,t) is the motion speed, a(l,t)— the differential
coefficient of wave extinction in consequence of losses, I — the length of the water influx axle along which
the local wave spreading takes place (linear radial co-ordinate), K- radius vector of the observation

[13 bX)

points. The sign “~” means that we disregard such “delicate” effects like wave field cross F(?J_ 1),
diffusion, wave profile distortion as a consequence of phase speed dispersion of elementary Fourie-signal,
as well as non-linear diffusion (Eilerov whirlwind type of the wave profile).

Utilization of wave-cinematic principle allows to approximately conceive the change function of
water consumption in the riverbed influx as a linear superposition of discontinuous and continuous
components, conditioned by the local influx of downpour waters into the riverbed system of the reservoir,
both in stationary and in un-established routines.

The discontinuous consumption component Q4(l,t) can be presented by a ultimate radial row com-
posed of N+1 wave functions; it was thorough enough studied earlier (here  ~ Vg - S, Vpbeing the
medium speed of water movement in the riverbed of the river, S — real section, | — the length of
the middle curve of the riverbed, ¢ - time). A more complex problem is calculation of the con-
tinuous consumption component Q.(l,¢), more complex than calculation of Qu(l,¢). This is related
to the fact that Q.(l,¢) is presented under the form of a curve (Duamel integral or potential lag),
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which depends on the density C (I,¢) of the continuous (according to I and t) water influx into the
riverbed flowing down from the active D area of the reservoir (D : [ € [a,b];r € [-Ro,+R1];|D| =
mes(D) ~ (b—a)(R1 + R2); R1 and Ry are the lengths of the right and left waterside slope in the active
riverbed area). To calculate the functions C(I,t) ~ Z[Qc(l,7,1)]|._o(I € [a,b],[t| < o) the afore-
mentioned wave-cinematic principle was used. It allows an approximate description of the flow-down
process from the reservoir slopes into the riverbed. This was the purpose of introducing the density
(intensity) function of the downpour flows (slope influx models) d(l,r,t)( [}, fj;o d(l,r, t)dldrdt =

Up(m?))- the general slope influx capacity formed on the D area as a consequence of rainfall. Esti-
mating d(l,r,t) & dof(1)g(r)h(t)(m/s) to find C(I,t) ~ %[QC(Z,T, t)]|,_o the curve formula C(l,t) ~
do f(1) [ 0R1 g(r Yt —r Juy)dr + f0R2 g(=r)h(t -7 /uz)drl] , was used, where uj 5 & v 2 c0s8; 2; V1 2-
are the speeds of the slope downfall of the downpour waters; 6 ; » are the inclinations of the slopes;
dop — normalizing coefficient that depends on Uy, |D|, T, (f), (9), (h); T — stands for the duration of the
rainfall; (f, g, h)— medium function value.

Estimations of f(I) ~ Pn(l), g(1) ~ Pu(r), h(t) ~ exp (=|2t/T|") (m,n = 0,4,q = 2,10) allowed,
with the help of the computer, a qualitative and quantitative research of the formation processes and
water discharge impulse structure @).(l,t), conditioned by continuous water influx into the riverbed
circuit. The resulted riverbed water discharge function is the solution for the heterogeneous equation of
the telegraphic type having variable (in time) coefficients. The physical analysis of the solutions showed
that, having the minimum empirical data, the proposed model allows us to carry out an estimation
of the basic parameters of the movement functions of the wave water discharge along the riverbed
with different flow routines and distances. At the same time, some enlargement (according to 1)
and lengthening (according to t) effects of the impulse Q.(l,t), have been discovered, these being
conditioned by convection processes, i.e. water transportation with different speeds. Extinction and
phase-amplitude signal distortions were also studied in different hydraulic routines and riverbed flow
parameters.

Notwithstanding the well-known proximity, having the minimal quantity of initial parameters, the
proposed wave-cinematic approach allows us to obtain a mathematically correct, achievable and physi-
cally content-rich picture of a complex phenomenon of formation, transformation and spreading of wave
water discharge in open riverbed. This structural approach can be used for elaboration of computer
algorithms allowing to carry out the hydraulic calculations and the prognosis of flood formation on
small and large rivers.
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Abstract. The problem of the uniform exponential stability and uniform observabil-
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1. NOTATION AND PRELIMINARIES

Let H, V be separable real Hilbert spaces and let L(H, V') be the Banach space of all bounded linear

operators from H into V. (If H =V then L(H,V) et L(H)). We write (.,.) for the inner product and
||.|| for norms of elements and operators. We denote by a ® b,a,b € H the bounded linear operator of
L(H) defined by a ® b(h) = (h,b)a for all h € H. The operator A € L(H) is said to be nonnegative
and we write A > 0, if A is self-adjoint and (Az,z) > 0 for all z € H. We denote by LT (H) the subset
of L(H) of nonnegative operators.

For A € L(H), A > 0 we denote by A'/? the square root of A and by |A| the operator (A*A)'/2.

If A€ L(H) we put ||A||l; = Tr(]A]) < oo and we denote by C (H) the set {A € L(H)/||A||, < oo}
(the operators’ trace class). If A € C1(H) we say that A is nuclear and it is not difficult to see that A
is compact.

The definition of the nuclear operator introduced above is equivalent to that given in [1] and [2].
It is known [1] that C1(H) is a Banach space endowed with the norm ||.||; and for all A € L(H) and
B e Cl(H) we have AB,BA € Cl(H)

If ||A|l, = (TrA*A)'/? we can introduce the Hilbert Schmidt class of operators, namely Cy(H) =
{A € L(H)/||A|l, < oo} (see [9]). C2(H) is a Hilbert space with the inner product (4, B), = TrA*B
(see [9)).

We denote by Ha the subspace of Co(H) of all self-adjoint operators. Since Hs is closed in Co(H)
with respect to ||.||, we deduce that it is a Hilbert space, too. It is known [2] that for all A € C1(H)
we have [|A]] < [[4]l, < 4], .

Let (Q, F, Fy,t € [0,00), P) be a stochastic basis and L2(H) = L*(Q, Fs, P,H). If ¢ € L*(), F, P, H)
we denote by E (£ ® £) the bounded linear operator which act on H given by E(§ ® £)(z) = E({(z, &) ).
The operator E({ ® £), called the covariance operator of &, is nuclear and ||[E({ ® §)||; = E Il 13-

For each interval J C Ry(Ry = [0,00)) we denote by Cs(J,L(H)) the space of all mappings
G(t) : J C Ry — L(H) that are strongly continuous. If E is a Banach space we also denote by
C(J, E) the space of all mappings G(t) : J C Ry — FE that are continuous.
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2. A REPRESENTATION OF THE MILD SOLUTIONS OF THE STOCHASTIC DIFFERENTIAL EQUATIONS

Assume A : D(A) C H — H is a generator of a Co-semigroup S(.) [6]. It is known that there exists
no € N such as for any n € N , n > ng we have n € p(A). The operators A, = n?R(n, A) —nl n > ng
are called the Yosida approximations of A. We consider the equation

(1) dy(t) = Ay(t)dt + Z Giy(t)dw;(t),

y(s) =€ € H,

and the approximating system

(2)  dya(t) = Apyn(t)dt + > Giyn(t)dw;(t),
i=1
yn(s) = f € Ha

where ¢ € L2(H), A is the infinitesimal generator of Cy-semigroup S(.), A, are the Yosida approxima-
tions of A, G; € L(H),i =1,...,m and w; are real w;’s are independent real Wiener processes relative
to ft.

It is known [7] that (2) has a unique classical solution and (1) has a unique mild solution in
C([s,T); L?(9; H)) that is adapted to F;; namely the solution of the equation

B w0 =St-s¢+ Y [ St nGaylridui(r).

We denote by y(t,s; &) (respectively y,(¢,s;€)) the mild solution of (1) (respectively the classical
solution of (2)).

Lemma 1 ([8]). There exists a unique mild (resp. classical) solution to (1) ( resp. (2)) and y, = y
in mean square uniformly on any bounded subset of [s, oc].

Consider the Lyapunov equation

(4) d%()+A*Q()+Q A+ZG* s)Gi+B=0,5>0

i=1
and the approximating Lyapunov equations:

(5) dQn( ) + A%Qn(s) + Qn(s)An + iG:Qn(S)Gz +B=0,s>0.

i=1
where A,,n € N,n>ng are the Yosida approximations of A and B € L*(H).

According [8], we say that @Q is a mild solution on an interval J C Ry of (4), if Q € Cs(J, LT (H))
and if it satisfies

©6)  Qs)z=S*(t— $)Q()S(t — 5) :c+/S* r—s ZG* ¥)Gi + BIS(r — s)adr

i=1

Lemma 2. [8] Let 0 < T < oo and R € LT (H). Then there exists a unique mild( resp. classical )

solution @Q (resp. Qn) of (4) (resp. (5)) on [0,T] such that Q(T) = R (resp. Qn(T) = R). They are
given by

Q(s)x = S*(T — s)RS(T —s:c+/S* r—s ZG* r)G; + B]S(r — s)zdr,

i=1

Qn(s)x = Si(T — s)RS, (T —s:c+/S* r—s[ZG*Qn r)G; + B]Sp(r — s)zdr

i=1
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and for each x € H, Qn(s)x — Q(s)z uniformly on any bounded subset of [0,T]. Moreover, if we
denote these solutions by Q(T,s; R) and respectively Q,,(T,s; R) then they are monotone in the sense
that Q(T, s; R1) < Q(T, 53 Ro) if B1 < Ro.

For every n € N, n>ng we define the mapping L,, : Ha — Ha,
m
Ln(P) = AyP + PA, + > GiPG;,P € M.
i=1

Obviously L, € L(H2) and

(1) Lp(P)=A,P+PA,+» G;PGi,P€Hy.

i=1

Let us consider the equation

dP,(t
(8) #:LnPn(t), P,(s)=ReHy,t>5>0
on Hs. The unique classical solution of (8) is P, (t) = S, (t — s)(R), where S,,(t — s) € L(Hz2) is the Cq
semigroup generated by L,, and it is not difficult to see that W =—-L:S:(t—s)forallt>s>0
[6]. Now it is clear that

7]

35 On(t —0)R,5)y = (=L;5,(t — )R, 5),, 5, R €My

for all t > 0 > 0. Let us consider S =z ® z,x € H. It is easy to see that (Fz,z) = TrF(z ® z) for all
FeL(H)and z € H If F € Hy then (F,S), = (Fz,z) . Integrating from s to ¢, we have

9) (Sp(t — s)Rz,z) — (Rx,x) = /(LZS:L(t —0)Rz,x)do, R € Hs.

Let Qn(t,s; R) be the unique classical solution of (5) with B = 0 such as @,(t) = R,R > 0. Since
@, also satisfies the integral equation (9) we deduce by using the Gronwall’s inequality that for all
ReHs,R>0and t > s > 0 we have

(10)  @u(t,s;R) = S, (t = s)(R) = Qu(t = 5,0; R)
A consequence of the results of [10] is the following theorem.

Theorem 3. Let C € L(H,V). If y(t,s;€),& € L2(H) is the mild solution of (1) and Q(t,s, R) is the
unique mild solution of (4) with B = 0 and the final value Q(t) = R > 0 then

o) (Ely(t,5:€) ® y(t, 5:€)]u, u) = TrQ(t, s;u® u)E (€ © £) for all u € H

b

E|C y(t, 59" = TrQ(t.s;C"C)E ( ©¢).
Proof. It u € H,& € L2(H) and y,(t, s;£) is the classical solution of (2) we deduce from [10]( Theorem
7) that
(1) (Elyn(t, 5:8) @ yn(t, 5; §)]u, u) = TrQn(t, s;u @ u)E (E®E)
and
(12)  E[Cyn(t,5: Ol = TrQn(t,5; C*C)E (€ €)

for all ¢ > s > 0, where we denote by Q,(t, s, R) the unique mild solution of (5) with B = 0 and the
final value Q,(t) = R > 0. It is known that the map T'r : C;(H) — C is continuous. From Lemma 2
we obtain

TrQ,(t,s;u@u)E (R E) T TrQ(t,s;u@u)E (EQE).

As n — oc in (11), (12) and using Lemma 1 we obtain a) and b). O
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By Theorem 3 and (10) we get
(13)  E|Cy(ts2)[* = (Q(t, 5:C"C)z, x) = (Q(t — 5,0, C*C)a, x)
forall C € L(H,V),z € H and t > s > 0.

3. THE UNIFORM EXPONENTIAL STABILITY AND THE UNIFORM OBSERVABILITY

Let us consider the equation (1) and the observation relation
(14)  z(t) = Cy(t, s, ),
where C € L(H,V) and y(t, s, z) is the mild solution of (1).

Since y(., s;z) € C([s,T]; L*>(Q, H)) for all z € H it follows that Cy(.,s;z) € C([s,T]; L*(Q,V)). We
note that ¢ — E||Cy(t, s;z)||” is continuous on [s, T].

We will use the notation {A;G;} for the equation (1) and {A,C;G;} for the system (1) si (14).
Definition 4 ([9]). We say that {A;G;} is uniformly exponential stable if there exist the constants
M >1, w >0 such that E||y(t,s;2)|> < Me <) ||z|” for all t > s >0 and x € H.

Definition 5 ([4]). The system {A,C;G;} is uniformly observable if there exist 7 > 0 and v > 0 such

s+T
that E [ ICy(t, s;2)||° dt > ~|z||*> for all s € Ry and x € H.

If Q(t,s,R) is the unique mild solution of (4) with B = 0 and the final value Q(t) = R > 0 we use
Theorem 3 and Definition 4 and we obtain the following proposition.

Proposition 6. a) Let I be the identity operator on H. The system (1) is uniformly exponentially
stable if and only if there exist the constants M > 1, w > 0 such that

Qt,s; 1) < Me=“t=9] for all t > s > 0,

b)The system {A,C;G;} is uniformly observable if and only if there exist T > 0 and vy > 0 such that
ST
/ Q(t,s;C*CYdt > I for all s € R

We consider the algebraic Lyapunov equation
(15) AR+ RA+) GiRG;+C"C =0.
i=1

Theorem 7. We assume G; € L(H) and C € L(H,V). If {A,C;G;} is uniformly observable then the
equation {A;G;} is uniformly exponentially stable if and only if the equation (15) has a unique solution

R with the property that there exist the positive constants m, M such that
(16)  m |lo|* < (Re,z) < M ||z||”
for allx € H.

Proof. ” =7 In the sequel we use the notation @ (respectively @),,) introduced by Lemma 2 for the mild
(respectively classical) solution of the equation (4) (respectively (5)) with final condition and B = 0.
Let R be the linear, nonnegative operator, which is given by

masz/mwmamWw

Since 0 < (Rz,z) < ||C|)? [ Me=«(r=5) l|z|” dr < ||C|” M ||z||” we deduce that R is well defined. Using

8
Theorem 3, Fubini’s theorem and (13) we get
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oo oo

(Re,z) = [ (Qr,5C*Cha,x) dr = [ (Q(u,0;C*C)ar, ) d.

s 0
Consequently, R does not depend on s. If 7, > 0 are the constants introduced by Definition 5 we
take 7 =, M = ||C||> 2 and (16) holds.
Let be T > 0. If y,(¢,s; &) is the classical solution of (2) we consider the linear nonnegative oper-

T
ator R.(s) given by (R}(s)z,z) = E [ |Cyn(r, s;2)||* dr. From Theorem 3 we deduce (RE(s)z, z) =

T
J{Qn(r —5,0;C*C)z, x) dr. Since the map p — Q,(p,0; C*C)z is Bochner integrable on [0, T — s] we

8

T
get R%(s)z = [ Qn(r —s,0; C*C)zdr. Differentiating the last equality with respect to s we deduce that
R%.(s) is the unique classical solution of (5) with B = C*C such that R%:(T) = 0. As n — oo by Lemma
T
2 we deduce that R%.(s)z — Rp(s)z = [Q(r,s;C*C)zdr for all z € H and Ry (s)z is the unique
n—oo

8
mild solution of (4) with B = C*C such that Ry (T) = 0. Since the function ' — R(s) is increasing
and bounded above on R, for every s fixed, it is clear that the sequence {R,(s)}r converges (as
T — o0) in the strongly operator topology to R which is the solution of the following integral equation

t m
Rz = S*(t—s)RS(t — s)z + [ S*(r — s)[>. GiRG; + C*C)S(r — s)xdr.
s i=1

Now it is a simple exercise to prove that R is a solution of the algebraic Lyapunov equation (15).
The uniqueness follows from (16) and the uniform exponential stability of {4;G;}.

7<” Let R be the solution of (15) which satisfies (16).

By using Ito’s formula for function F' : Ry x H — R, F(t,z) = (Rxz,z) and the stochastic
process y(t,s;x),h € H and by taking expectations, we have (Rz,z) = E(Ry(t,s;z),y(t,s;z)) +

t
E [||Cy(r,s;2)|]” dr for all z € H and t > s > 0.

Now we obtain (Rz, ) > (Q(s + 7, s; R)z, z) 4+~ ||z|° for all z € H from Theorem 3 and Definition
5. Replacing = by y(s,p;z),s > p > 0,z € H, taking expectations and using (16) and Theorem 3 it is
not difficult to deduce (1 — %) (Q(s,p; R)x,z) > (Q(s+ 7,p; R)x,x) for all s+ 7 >p>0and z € H.
Let t > p > 0. Then there exists n € N, r > 0 such that t —p = n7 + 7,0 < r < 7 and we have
(by induction) (Q(t,p; R)z,z) < (1 — %)" (Q(r + p,p; R)x, x) . From (16) and since R — Q(t,p; R)

is monotone ( according Lemma 2) we get mE |jy(t, p; z)||* < (1 — 'y/M)”ME lly(r + p, p; z)||* for all
t>p>0and z € H.

It is known that ([6]) if S is a Co— semigroup then ||S(t)]| < Mye“t for all t € Ry. So it is not
difficult to prove ( we use (3)) that there exists the positive constant K such that E |jy(r + p, p; z)||* <
K||z||* and for all t > p > 0 and z € H we get E|ly(t, p;z)|° < [(1 — v/M)Y/7[=PK (M /m)(1 —

L )

v/ M)™ ]| O
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Large Fuzzy logic applications in manuscript character recognition

E. Valutse, O. Bejenari, D. Cantemir

Technical University of Moldova

The purpose of this paper is improving of manuscript character recognition using a fuzzy logic.
Model and some procedures are proposed for processing of scanned data to simplify the problem so
that it can be easily described in fuzzy rules.

Technical processes which are conventionally difficult to control are generally characterized by multi-
variable control or non-linear and time-variant process characteristics, that can only be described in-
adequately by mathematical models. Fuzzy applications may be employed either in addition to, or
instead of, conventional control in these cases. The fuzzy control block with its defined input/output
behavior can therefore be used on the same automation systems in the same way. The character recog-
nition problem presents certain obstacles that make pattern matching on a bit-for-bit basis impractical,
because the edge of a character segment can show up in two or more data slices, depending on where
the slices overlap. As it is known, one approach to recognition would have a program compare scanned
characters to templates on a bit-for-bit basis. Clearly, this procedure could often fail. For instance,
the program would expect a 1 in slice 1, bit 31 of a character 0, and neither misaligned nor skewed
characters would satisfy the expectation. It is proposed another approach would have the program
sum of all the bits in each slice and compare the resulting slice totals to corresponding slice totals from
templates.

The definition for the character set to be recognized appears likely in fig.1. Let us consider a darkened
pixel to be a bit with a logical value of 1.

FIGURE 1

One of the approaches for recognition would have a program compare scanned characters to templates
on a bit-for-bit basis. It is clear, this procedure could often fail. Another approach will be applying
fuzzy rules in manuscript characters recognition [2].

For creating and applying fuzzy rules some special characteristics will be used. One of these is a
transition that is defined as the difference between a current local maximum (or minimum) and the
previous local minimum (or maximum). The data preprocessor takes a data slice, obtains its slice
total, and compares the magnitude of the slice total to previous slice totals to determine whether it
constitutes a new local maximum or minimum. The proceeding will be the following: the program will
be used for calculating the sum of all the bits in each slice. As the result the plot of slice total will
be obtained. Figure 2 is a plot of the slice totals for the “m” character. Using program results the
transition characteristics will be calculated.

The obtaining results serve the base for “fuzzifying” process [1,2]. It is needed to establish a universe
of discourse that defines the range of possible values for fuzzy inputs. Once the universe of discourse is
defined, fuzzy sets can be created within it. Quantified transitions will form the input to the character
recognition fuzzy engine. The fuzzy rules will look something like this: A very large negative transition,
followed by a large negative transition, followed by a large positive transition, followed by a very large
positive transition, indicates “j” character:

If (X1 = Very_Large_Negative) € (X2 = Large_Negative) €

(X3 = Large_Positive) & (X4 =Very_Large_Positive) then Char = “”.



224

It is clear, for the all manuscript characters it is required to write the similar rules. It is important
to note that there are very slightly oversized or wandered manuscripts.

Therefore, the range of transition magnitudes for all characters must be obtained by experimental
training. Some of these results are shown in Table 1.

Character X1 (min, max) X2 (min,max) X3 (min,max) X4 (min,max)

o) 14 24 -14 -4 -2 8 . .
f 14 41 -28 -4 -7 33 -22 -4
a 6 23 -19 -5 -7 22 -10 -6
v 8 15 -10 -4 3 13

TABLE 1

F1GURE 2. Plot of the slice totals of one of “m” character.
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Modelling a producer-consumer system

Cristian Vidragcu
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Abstract. This paper presents a producer-consumer system with an unlimited buffer
modelled by an inhibitor Petri net, and proves some properties of the system.

Keywords: parallel/distributed systems, Petri nets, modelling, verification.

1. INTRODUCTION AND PRELIMINARIES

A Petri net is a mathematical model used for the specification and the analysis of parallel /distributed
systems. An introduction about Petri nets can be found in [Rei85].

One formal analysis method for Petri nets is that of place and transition invariants, which were
first introduced in [Lau72]. Place and transition invariants are useful to prove dynamic properties, like
reachability, boundedness, home state, liveness and fairness properties.

It is well-known that the behaviour of some distributed systems cannot be adequately modelled by
classical Petri nets. Many extensions which increase the computational and expressive power of Petri
nets have been thus introduced. One direction has led to various modifications of the firing rule of nets.
One of these extensions is that of inhibitor Petri nets.

Let us briefly recall the basic notions and notations concerning Petri nets and inhibitor Petri nets
in order to give the reader the necessary prerequisites for the understanding of this paper (for details
the reader is referred to [BeF86], [Rei85], [JuT99]). Mainly, we will follow [JuT99].

A Place/Transition net, shortly Petri net, (finite, with infinite capacities), is a 4-tuple ¥ = (S, T, F, W),
where S and T are two finite non-empty sets (of places and transitions, resp.), with SNT = 0,
F C(SxT)U(T x 8) is the flow relation and W : (S x T)U (T x S) — N is the weight function of &
verifying W(z,y) = 0 iff (z,y) ¢ F.

A marking of a Petri net ¥ is a function M : S — N ; it will be sometimes identified with a |S|-
dimensional vector. The operations and relations on vectors are componentwise defined. N° denotes
the set of all markings of X.

A marked Petri net is a pair v = (X, M), where ¥ is a Petri net and My, called the initial marking
of v, is a marking of X.

Let ¥ be a Petri net, t € T and w € T*. The functions ¢t ,tT : § — N and At,Aw : S — Z are
defined by: ¢ (s) = W(s,t) , tT(s) = W(t,s), At(s) =tT(s) — ¢t (s), and

Aw(s) = 0, ifw=2A
WEIZ S, Ati(s), ifw=tity...t, (n>1)

The sequential behaviour of a Petri net X is given by the so-called firing rule, which consists of

, forall s € S.

e the enabling rule: a transition ¢ is enabled at a marking M in ¥ (or ¢ is fireable from M),
abbreviated M[t)s , iff t— < M ;

e the computing rule: if M|t)s, then ¢t may occur yielding a new marking M', abbreviated
MtysM', defined by M' = M + At.

In fact, any transition ¢ of ¥ establishes a binary relation on N°, denoted by [t)s and given by:
MtysM'iff t= < M and M' = M + At.

If t1,t2,...,tn (n > 1) are transitions of X, [t1ts...t,)s will denote the classical product of the
relations [t1)s,. .., [tn)s. Moreover, the relation [A)y is considered, by defining [A)x = {(M, M)|M €
N1,

Let v = (¥, My) be a marked Petri net, and M € N°. The word w € T* is called a transition
sequence from M in X if there exists a marking M’ of ¥ such that M|w)sM’. Moreover, the marking
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M' is called reachable from M in X. The set of all reachable markings from Mj is called the reachability
set of 7, and it is denoted by [Mo)..

A place s € S is bounded if there exists k € N such that M(s) < k, for all M € [My),. The net v is
bounded if all its places are bounded.

A transition ¢t € T is live if for any reachable marking M € [My),, there exists a marking M’
reachable from M such that ¢ is fireable from M’. The net « is live if all its transitions are live.

In order to be able to define the notion of the incidence matrix for a Petri net ¥ = (S, T, F, W), it
is necessary to have a total ordering of the sets S and T'. Without loss of generality, it will be assumed
that, if these sets are of the form

S={s1,...,8m}, and T ={t1,...,tn},
then they are totally ordered by the natural order on the indexes of the elements:
S: 851<...<8m, and T: t; < ... <ty
The incidence matriz of a Petri net ¥ is the m X n-dimensional matrix I, defined by
Is(i,j) = Atj(si), V1<i<m, V1<j<n.

The notion of incidence matrix is extended also to marked Petri nets (X, M) through the unmarked
underlying net X.

An S-invariant (or place invariant) of ¥ is any m-dimensional vector J of integer numbers which
satisfies the equation J - Iy, = 0.

The characterization theorem of S-invariants says that, if J is an S-invariant of a marked Petri net
v=(X, Mp), then the relation

J-M=J- M,

holds for any M € [My),. In other words, this theorem says that any S-invariant of vy gives the weights
for the places of a subnet of v in which the tokens are preserved (through these weights).

Inhibitor Petri nets are an extension of Petri nets, which allows them to perform zero tests on
locations.

An inhibitor Petri net is a pair v = (X, 1), where ¥ = (S, T, F,W) is a Petri net and I C S x T,
with F NI =0, is the set of inhibitor arcs.

Let v = (X,1I) be an inhibitor Petri net. The inhibitor arcs (s,t) € I are also referred to as zero
tests of 7. More exactly, it is said that the transition ¢ tests for zero the location s. X is called the
underlying Petri net of v. A marking of v is any marking of its underlying Petri net.

A marked inhibitor Petri netis defined similarly as a marked Petri net, by changing “¥” into “X, I”.

Pictorially, an inhibitor Petri net will be represented as a classical net and, moreover, the inhibitor
arcs I will be drawn as dotted lines, and not as vectors like the normal arcs F.

The behaviour of an inhibitor Petri net v = (X, ) is given by the i-firing rule, consisting of

e the i-enabling rule: a transition ¢ is i-enabled at a marking M (in v), abbreviated M][t). ;, iff
M]t)s, and, moreover, M(s) = 0 for all s € S such that (s,t) € I.

e the i-computing rule: if M|t), ;, then the marking M' i-produced by the occurrence of ¢ at the
marking M, abbreviated M][t). ;M’, is defined by M’ = M + At (i.e., like for Petri nets).

The notions of transition i-sequence and i-reachable marking are defined similarly as for Petri nets.
The set of all i-reachable markings of a marked inhibitor Petri net «y is denoted by [Mg),,; (Mo being
the initial marking of 7).

All other notions from Petri nets (i.e. boundedness, liveness, etc.) are defined for inhibitor Petri
nets similarly as for Petri nets, by considering the notion of i-reachability instead of reachability from
Petri nets.

The notion of place invariants for inhibitor Petri nets, and results regarding them, are the same as
for Petri nets. We will briefly remind this notion.

The incidence matriz of an inhibitor Petri net v = (£, I) is I, = Iy, where Ix, is the incidence matrix
of the underlying Petri net of v. The notion of incidence matrix is extended also to marked inhibitor
Petri nets (X, I, Mp) through the unmarked underlying net (X, I).
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An S-invariant (or place invariant) of -y is any S-invariant of its underlying Petri net ¥£. The same
characterization theorem of S-invariants from Petri nets holds also for inhibitor Petri nets.

The paper is organized as follows. Section 2 presents an example of a producer-consumer system
modelled by an inhibitor Petri net, and section 3 presents the verification of the system properties using
the place invariant method. Section 4 concludes this paper.

2. PRODUCER-CONSUMER WITH UNLIMITED BUFFER

This section presents an example of using inhibitor Petri nets to model and analyse real systems.

Let us consider a system consisting of a producer and a consumer. The producer produces and sends
messages to the consumer, one by one, through an asynchoronous channel (a buffer with unlimited
capacity for storing messages). The consumer receives and consumes, one by one, the messages from
channel. Moreover, the producer can take a break at any moment, but we impose the restriction that
the consumer can enter his inactive state only if the producer is inactive and there is no message
pending in the channel.

The same system, but with a limited buffer, was modelled by a Petri net in [Rei85]. Unfortunately,
this system with an unlimited buffer cannot be modelled by a Petri net because zero tests of a location
with infinite capacity cannot be simulated by Petri nets (a proof of this fact can be found in [JuT99)).

A modelling of this system by an inhibitor Petri net v = (X, I, Mp) is presented in Figure 1, with
the following interpretation of places:

ready o sefd remdy £o coflswme

prodicee C- o semd buffer recefik LTI
-3 P
S,
LS| 2 5 " 5 Iy
rendy fo proaduce Tendy o Teceiie
fake TEEUTNE T el R
a bremk acEvly EalR=-. webEinky
i Drewk
wuncfile smtinde Ficlfie adake
53 57

FIGURE 1. Producer-consumer system with unlimited buffer

- s1 marked = the producer is ready to produce a message or to take a break;
- s2 marked = the producer is ready to send the last produced message;

- s3 marked = the producer is inactive (in a break);

- s4 = the unlimited buffer for storing messages;

- s; marked = the consumer is ready to receive a message or to take a break;
- s¢ marked = the consumer is ready to consume the last received message;
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- s7 marked = the consumer is inactive (in a break).
The interpretations of transition firings are the following:

- t; = the producer produces a message;

- to = the producer sends a message;

- t3 = the producer becomes inactive (takes a break);
- t4 = the producer resumes his activity;

- t; = the consumer receives a message;

- tg = the consumer consumes a message;

- t; = the consumer becomes inactive (takes a break);
- tg = the consumer resumes his activity.

The entering of the consumer in his inactive state, possible only when the producer is inactive and
there are no messages in the buffer, is modelled by the three inhibitor arcs of this net, namely the arcs
(s1,t7) and (sa,t7), which tests if producer is inactive, and the arc (s4,t7), which tests if there are no
messages in the buffer.

We say that the producer-consumer system with an unlimited buffer is modelled correctly, if it has
the following properties:

(P1) At any moment, the producer is in one of the states “ready to produce”, “ready to send” or

“inactive”;

(P2) At any moment, the consumer is in one of the states “ready to receive”, “ready to consume”

or “inactive”;

(P3) The buffer can contain any number of messages;

(P4) The consumer can enter his inactive state only if the producer is in his inactive state and there

are no messages in the buffer;

(P5) The system is live, i.e. it will never reach a deadlock state.

In the next section we will show how the verification of these properties can be done.

3. VERIFICATION OF SYSTEM PROPERTIES
Using S-invariants, we prove in this section the correctness of our modelling.

Theorem 1. The inhibitor Petri net from Figure 1 models correctly the producer-consumer system
with unlimited buffer.

Proof. Let v = (2,1, My) be the inhibitor Petri net from Figure 1. It is easy to verify that the vectors
1

OO OO =
S
|
-0 O OO

are S-invariants. Moreover, these are the only minimal S-invariants of ~.
Let M € [My)~ ; be an arbitrary i-reachable marking of v. Using the S-invariant J; and the charac-
terization theorem of S-invariants, we find that

(¥)  M(s1) + M(s2) + M(ss) =1,
which proves (P1). Similarly, using J» we obtain that
() M(s5) + M(sg) + M(s7) =1,

which proves (P2).
In order to prove (P3), let us notice the following fact. Given any k € N, by firing the transition
sequence w = (t;t2)* at the marking My, a new marking M € [My),,; will be produced, with M (s4) = k
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and M (s) = My(s) for all other places of the net. This means that the buffer can contain any number
of messages.

In order to prove (P4), let us notice that, if M is an arbitrary i-reachable marking in which the
consumer is inactive (i.e. M(s7) = 1), then M can be reached only by the occurence of transition t;
of the net . It is obviously that transition ¢; of v can occur only if the producer is inactive and the
message channel is empty, because of the inhibitor arcs of v and the equality ().

For proving the net « is live, i.e. it never reaches a deadlock state, we will show that at any i-
reachable marking M € [M),; there exists at least one transition of v which is fireable at M. Indeed,
from the equality (*) follows that either the transitions ¢; and ¢35 are fireable at M, if M(s;) = 1, or
the transition ¢o is fireable at M, if M(s9) = 1, or the transition #4 is fireable at M, if M(s3) = 1.
Therefore, the net from Figure 1 is live, which proves (Ps).

This concludes the proof of the system properties. O

Let us remark that from the last argument from above follows also that the producer is live (i.e. the
net v w.r.t. the set of transitions {t1,ts,t3,t4} is live).

Moreover, the consumer (i.e. the net v w.r.t. the set {ts,ts,t7,ts}) is not live, but “almost live”, i.e.
it never deadlocks excepting the case when the producer is active and the message channel is empty.
Indeed, from the equality (x+) follows that the only possible cases are the following ones:

i) the transition tg is fireable at M, if M (s;) = 1;
) the transition tg is fireable at M, if M (sg) = 1;
) the transition t5 is fireable at M, if M(s5) = 1 and M(s4) > 0;
iv) the transition t7 is i-fireable at M, if M(s5) =1, M(s4) =0 and M (s3) = 1;

) the case M(s5) =1, M(s4) = 0 and M(s3) = 0, i.e. the case in which the producer is active
(“ready to produce” or “ready to send”) and the message channel is empty, is the only case
when the consumer has no directly possible action, but only after an action of the producer
(either the producing of a message, or the sending of a message, or the entering of the producer
in his inactive state).

4. CONCLUSION

In this paper we have modelled a sender-receiver system with an unlimited buffer by an inhibitor
Petri net, and we have proved the correctness of our modelling by using S-invariants.
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Abstract. The purpose of the paper is that of defining the delays of a circuit as well
as the properties of: determinism, order, time invariance, constancy, symmetry and
the serial connection.
1. INTRODUCTION
Digital electrical engineering is a non-formalized theory and the aim of our concerns is that of trying a
semi-formalization. The delay (condition) is the proposed starting point and it represents the real time
model of the circuit that computes the identity function 19 ;y. Logical gates and wires are modeled
by a Boolean function that computes instantaneously, in real time, the output depending on the inputs
and by zero, one or several delays at the output or at the inputs. The model of an asynchronous

circuit consists then in the composition of the models of the logical gates and wires, meaning the serial
connection of the delays and the composition of the Boolean functions.

2. PRELIMINARIES
Definition 1. Let B = {0,1} endowed with the discrete topology, with the order 0 < 1 and with the
usual laws: —,-, U, P.

Definition 2. Let x : R — B and A C R. We define
= { 1EA0=0 Py

1, otherwise
£EA few

Uw(é-):{ 113£€A1$(€):1 ’ U$(£):O

0, otherwise
(€A (ew

Definition 3. The order and the laws of B induce an order and laws in the set of the R — B functions,
that are noted with the same symbols.

Definition 4. Let z : R — B. The left limit function x(t — 0) is defined by
Vte R,3e >0,VE€ (t —e,t),2(§) = x(t —0)
Definition 5. We suppose that z(t — 0) exists. Then the functions x(t — 0) - z(t), z(t — 0) - z(t) are
called the left semi-derivatives of x.
Definition 6. The characteristic function x4 : R — B of the set A C R is
wo={ gigh

Definition 7. We call signal a function x having the property that there exist a unbounded sequence
0<ty<ti <ty <..s0 that

z(t) = x(to — 1) - X(=o0,to) (1) & (t0) - X[to,t:) (1)  2(t1) - X[ty ,1) () B ..
and we note with S the set of the signals.
Notation 8. 7¢: R — R is the translation 7%(t) =t — d, where t,d € R.
Theorem 9. The constant functions 0,1 : R — B are signals. If 0 < m < d and x,y € S, then the

functions x o1 x(t), z(t) - y(t), z(t) Uy(t), z(t) © y(t), N z(§), U x (&) are signals
ge[t—d,t—d+m] ¢€lt—d t—d+m]
too.
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Theorem 10. For any x € S, the left limit function z(t — 0) exists.

Notation 11. We note with P*(S) the set of all non-empty subsets of S.

3. STABILITY. RISING AND FALLING TRANSMISSION DELAYS FOR TRANSITIONS
Definition 12. Let u,z € S, called input and respectively state (or output). The implication
Va € B, (3t1,Vt > t1,u(t) = a) = (Fta, Yt > 12, 2(t) = a)

is called the stability condition (SC). We say that the couple (u,x) satisfies SC. We call also SC the
function Solsc : S — P*(S) defined by

Solsc(u) = {z|(u, z) satisfies SC'}

Definition 13. We suppose the ezistence of a € B so that 3t1,Vt > t1,u(t) = a and the fact that (u,x)
satisfies SC. If u,x are both non-constant, we note

t1 = min{t, |Vt > t1,u(t) = a}, t5 = min{ta|Vt > ta, 2(t) = a}
The transmission delay for transitions is the number d > 0 defined by

d = max(0,t5 — t})
Ifu(ty — 0)u(t?) = z(t3 — 0)-z(t3) = 1, then d is called rising and if u(t;—0)-u(t}) = z(t5—0)-z(t3) = 1,
then d is called falling. If u, respectively x is constant, then t] respectively t5 is by definition 0.

4. DELAYS

Definition 14. A delay condition (DC) or shortly a delay is a function i : S — P*(S) with the property
that Yu € S, i(u) C Solsc(u).

Remark 15. The problem of the delays is that of the real time computation of the identity function 1g.
In practice we often work with systems of equations and inequalities in u, x that model this computation
and i(u) represents for all u the set of the solutions of these systems. Definition 14 requests that
solutions exist for any u and that the systems be stable.

Example 16. The next functions are DC’s:

o i(u) = {u} is usually noted with 1. More general, the equation i(u) = {u o 7%} defines a DC
noted with I5,d > 0.

o i(u) = {234 > 0, 2(1) = u(t) - xjuo0) ()}

o i(u) = Solsc(u)

Theorem 17. Let U C S and the DC’s i, .
a): If Vu,i(u) AU # 0, then the next equation defines a DC
(EAU)(u) =i(u) AU
b): If i, j satisfy Vu,i(u) A j(u) # 0, then i A j is a DC defined by
(i A 3) () = i(u) A ()

c): Ttems a), b) are generalized by taking an arbitrary function ¢ : S — P*(S) with Vu,i(u) A
o(u) #0; i Apis a DC

(@A) (u) = i(u) Ap(u)
d): 7 and j define the DC i V j in the next manner:

(i V) (u) = i(u) Vj(u)
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5. DETERMINISM

Definition 18. The DC'i is called deterministic if Vu,i(u) has a single element and non-deterministic
otherwise.

Remark 19. By interpreting i as the set of the solutions of a system, its determinism indicates the
uniqueness of the solution for all u. On the other hand we shall identify the deterministic DC’s with
the functions i : S — S. The non-deterministic delays are justified by the fact that in an electrical
circuit to one input u there corespond several possible outputs x depending on the variations in ambient
temperature, power supply, on the technology etc.

Example 20. In 16 I, 1; are deterministic and the other delays are non-deterministic. LetU C S and
the DC’s i,j with i deterministic. If Vu,i(u) AU # 0, then i NU(= 1) is deterministic and similarly for
PN
6. THE ORDER
Definition 21. For the DC’s i,j we define
i C j <= Yu,i(u) C j(u)

Remark 22. The inclusion C defines an order in the set of the DC’s. Solgc is the universal element
relative to this order, because any i satisfies i C Solsc. We interpret the inclusion i C j by the fact
that the first system contains more restrictive conditions than the second and the model in the first
case is more precise than in the second one. In particular, a deterministic DC contains the maximal
information and the DC Solsc contains the minimal information about the modeled circuit.

Theorem 23. Any DC j includes a deterministic DC i; if i C j and if j is deterministic, then i = j.

7. TIME INVARIANCE

Definition 24. The DC'i is called time invariant if
Yu,Vz,Vd € R, (uor? € S and x € i(u)) = (zo7? € S and x o1 € i(uor?))
and if the previous property is not satisfied then i is called time variable.

Example 25. I, is time invariant, d > 0. Let the time invariant DC’s i,j with Yu,i(u) A j(u) # 0;
then i A j is time invariant. Let k time invariant; then iV k is time invariant. Solsc is time variable.

Theorem 26. Ifi is a time invariant DC, then the next equivalence holds:

Yu,Vz,Vd > 0,z € i(u) <= zo7¢ € i(uo1?)
8. CONSTANCY

Definition 27. A DC i is called constant if 3d, > 0,3dy > 0 so that Yu,Vz € i(u) we have
z(t—0)-z(t) <u(t—d,)

z(t—0) - z(t) <u(t—dy)
If the previous property is not satisfied, then i is called non-constant.

Example 28. 1; is constant, d > 0. Let U C S and the DC’s i, j, the first constant. If iANU and i A\ j
are defined, then they are constant. More general, any DC included in a constant DC' is constant.

Theorem 29. The next functions
ay= [u@ , 2= Ju(©
g€ft—d,t—d+m] g€ft—d,t—d+m]
are deterministic, time invariant, constant DC’s, where 0 < m < d.

Remark 30. Constancy means that x is allowed to switch only if u has anticipated this possibility d,.,
respectively dy time units before. Its satisfaction does not imply the uniqueness of d,.,dy and 29 offers
such a counterexample.
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9. RISING-FALLING SYMMETRY

Definition 31. The DC'i is called (rising-falling) symmetrical if
Vu,i(u) = {Z|z € i(u)}
and respectively (rising-falling) asymmetrical otherwise.

Example 32. I;,d > 0 and Solsc are symmetrical. Let the symmetrical DC’s i,j; if i A j is defined,
then it is symmetrical. The DC iV j is symmetrical too.

10. THE SERIAL CONNECTION
Definition 33. For the DC’s i,j we note with k =i o j the function k : S — P*(S) defined by
k(u) ={y|Fz,z € j(u) and y € i(z)}
k is called the serial connection of the DC’s i, j.

Theorem 34. The next statements are true:
a): kis a DC.
b): Ifi,j are deterministic, then k is deterministic.
c): Ifi,j are time invariant, then k is time invariant.
d): Ifi,j are symmetrical, then k is symmetrical.

Remark 35. The serial connection of the constant delays is not constant, in general. The set of the
DC(C’s is a non-commutative semi-group relative to the serial connection and I is the unit.

Theorem 36. Let the DC’s i,j,k. The next implications are true:
1Cj=10kCjok
jCk=iojCiok
Theorem 37. Let U C S and the DC’s i, 73, k.
a): If Vu,i(u) AU # 0, then Vu, (ioj)(u) AU # § and
(iAU)oj=(ioj) AU
If Yu, j(u) AU # 0, then we have
io(jAU)Cioj
b): If Vu,i(u) A j(u) # 0, then Vau, (i o k)(u) A (j o k)(u) # 0 and
(iNj)ok C(iok)AN(jok)
If Yu, j(u) A k(u) # 0, then Yu, (o j)(u) A (i o k)(u) #  and
io(jAk)C(icj)A(iok)
c): We have
(iVj)ok=(iok)V (jok)
io(jVk)={(icj)V(iok)
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Abstract. By making use of the notions and the notation from [12], we present the
bounded delays, the absolute inertia and the relative inertia.

1. BOUNDED DELAYS

Theorem 1. The system

(1) N u(é) <z(t) < U u(f),

E€[t—dy,t—dntmy] §€[t—dy t—ds+my]
where u,z € S and 0 < m, <d,,0 <my < dj defines a DC iff
(2) dr >dy —my,dy > d, —m,.

Proof. The proof consists in showing that for any w (2) implies the existence of a solution = of (1);
any such z satisfies € Solgc(u). If (2) is not fulfilled, it is proved that w exists so that (1) has no
solutions. O

Definition 2. The system (1), when (2) is true, is called the bounded delay condition (BDC). u,x
are the input, respectively the state (or the output); m,,my are the (rising, falling) memories (or
thresholds for cancellation) and d,,dy , respectively dy — my,d, — m, are the (rising, falling) upper
bounds, respectively the (rising, falling) lower bounds of the transmission delay for transitions. We say
that the tuple (u, m,,d,, m¢,dy) satisfies BDC. We shall also call bounded delay condition the function

SOlEBg'mmf’df : S = P*(S) defined by
Sollpwdr ™41 () = {x|(u, my, dp,my, df) satisfies BDC}
Definition 3. The inequalities (2) are called the consistency conditions (CC) of BDC.

Theorem 4. Let 0 < m, < d,,0 <my < dy and 0 <m, <d,,0 <m), <d, so that CC is fulfilled for
each of them.

! ”

a): We denote d, = min(dr,d;),d} = min(df,dlf),m; = d. — max(d, — m,.d, —m,), my; =

d} —max(dy —my, dlf - mlf) The next statements are equivalent:

) £ 0,

. oy d
a.i) Yu, Solgggf’mf’df (u) A Sol g™
a.ii) d, > d} - m},d} >d, —m,
: and if one of them is satisfied, then we have

! ! ! ! ” . ” £
My, dpr,my,dy m,.,d,.mg,d; m,.,d,.,mg.d;

Solgher A Solgpe = Solgpe .

. » ’ » ’ » 5 . ’ ’
b): We use the notations d, = max(d,,d,),d; = max(dy,d;), m, = d, — min(d, — m,,d, —m,),
” 9 . ’ ! . .. » 9 Py 77 9 9 .
my=d; — min(d; — myg,d; — mf). The inequalities d, > d; —m;,d; > d, —m, are satisfied
and
! ! ! ! ” . ” £
My, dr,my,df m,.,d,.,mg,dg m,.,d,,mg.d;
Solgpe V Solg e C Solgpe

The previous inclusion becomes equality iff

1 1 ! 1
sy my,d
Y, Solgb’gf’mf’df (u) A Sol g™ (u) # 0.

c): The next statements are equivalent:
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. My ,dr,my,dy . e s
c.i) Solgpe is deterministic;
c.ii) the upper bounds and the lower bounds of the delays coincide
dT = df —mf,df = dT — My;
c.iii) the memories are null
m, =my = 0;
c.iv) the bounded delay degenerates in a translation
(3)  3d>0,80lpa ™Y = 1,
d): The next statements are equivalent:
. s
di) Solfper™ ¥ C Solgpe™ s
dii) d, —m, <dp —m, <dy <dj, dy —my <dj—my <d, <d,.
e): Solprdr™ % s time invariant.
f): The next statements are equivalent:
£i) Solfmd ™% is symmetrical;
f.ii) dr = df,mr =mg.

! ] ! ]
Mmetm,,do+d, mgt+mg,de+d; .
g): Solgpe is a BDC and we have

! 1 1 1 ! 1 1 !

m,.,d,. m;.d My,dyp,m¢,d my+m, d+d ms+m,,ds+d
Sol 7 o Sol'y i = ol v v I 4
BDC BDC BDC -

2. FIXED AND INERTIAL DELAYS
Definition 5. Let u,z € S and let d > 0. The equation (see 4 (3))
z(t) = u(t —d)

is called the fized delay condition (FDC). The delay defined by this equation is also called pure, ideal
or non-inertial. A delay different from FDC is called inertial.

Corollary 6. FDC is deterministic, time invariant, constant and symmetrical. The serial connection
of the FDC’s coincides with the composition of the translations

Tjoly =1y oly=1I41q4,d>0,d >0.
Remark 7. At 5 inertia was defined as the property of the DC’s of being not ideal. In particular the

non-deterministic DC’s, for example the non-trivial BDC’s (i.e. the BDC’s with memory m, +my>0),
are inertial.

3. ABSOLUTE INERTIA

Definition 8. The property

2t -0)-z() < (] =(§)

EE[t,t+6,]
=020 < () 7@
€t t+d5]

true for 6, > 0,6y > 0 is called the absolute inertial condition (AIC), or the non-zenoness condition.
Or, 05 are called inertial parameters. If it is fulfilled, we say that the tuple (6,,0dr,x) satisfies AIC. We

also call AIC the set Soli{,’acf C S defined by

SOli’}’gf = {z|(6,,8¢,z) satisfies AIC}.

Remark 9. AIC means that if x switches from 0 to 1, then it remains 1 at least §, > 0 time units +
the dual property. Remark the trivial situation 6, = 6y = 0.
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Definition 10. Let i be a DC satisfying Yu,i(u) A Soli{,’acf # 0. The DC i A SolAIC is called abso-

lute inertial delay condition (AIDC). Solggc"’mf’df A Soli{l’gf is called bounded absolute inertial delay

condition (BAIDC).

Theorem 11. The numbers 0 < m, < d,,0 < my < dy with CC true and 6, > 0,5y > 0 are given.
The next statements are equivalent:

a): Vu, Solggcr’mf’df( YA Soli{jgf # 0
b): 4, +dr <my +my

Corollary 12. 0 < m, < d,,0 <my <df, 0<m, <d,,0<m; <d; and 6, >0,6; > 0,5, > 0,5, >
0 satisfy d, > dy—my,ds > dp—my,d, > dlf—mlf,dlf >d,—m,, d, +(5f < m,«+mf,(5l +5;c <m, +mlf.

m,,—i-m ,dr +dT,mf+mf,df+df A

m7‘7 rvmfvdf 07,05 rﬂdr7mf7df b 5f
In such conditions Solg NSoljjd , Solghe ANSolj;d,50lgpe "

5.8
Sol ;1L are BAIDC’s and the next property of the serial connection holds

d.m’sd 5,8 d L)
@y Mg,y my,d M f,af 0 f
(SOZBDC A Sol i14) o (Solp e A Solyic) C

Mt dptdymy+m}y.ds+d; 5,8
C Solgpe A Sol {14

4. RELATIVE INERTIA
Definition 13. 0 < p, < 6,,0 < puy <6 and u,z € S are given. The property

z(t—0) - z(t) < N (©)

E€[t—0r,t—0r+pr]

W-0-TH< () w®

EE[t—0s,t—=b54ps]

S

is called the relative inertial condition (RIC). i, 0r, puy, 0 are called inertial parameters. If it is fulfilled,

we say that the tuple (u, pir, O, iy, 7, x) satisfies RIC. We also call RIC the function Solé}’gf’w’éf :
S — P*(S) defined by

So lf{l’cr’“f o (u) = {z|(u, pr, 0r, pug, 05, ) satisfies RIC}.

Theorem 14. Let 0 < py < 6,,0 < py < é5,u € S and z € Sol%}’g’”fﬁf (uw) arbitrary. If 5, >
85 =0ty —Ostps

Of — prf,0p > 0p — pr then x € Sol "

Remark 15. RIC states that the inertial delays 'model the fact that the practical circuits will not
respond (at the output) to two transitions (at the input) which are very close together’[1], [2]. Theorem
14 connecting AIC and RIC makes use of the condition 6, > 6y — py, 0y > 6, — i, that is very similar
to CC, but with a different meaning.

Definition 16. Let i be a DC with Vu,i (u )/\Solg}’g"”f 05 (u) # 0. Then the DCi/\Sol%’”I’Cr’”f 07 (see
Theorem 4.4 ¢) in [12]) is called relative inertial delay condition (RIDC). In particular Soly ) dromsods
So lf{l’gf’w’éf is called bounded relative inertial delay condition (BRIDC).

Theorem 17. Let be the numbers 0 < m, <d,,0 <my <dy . The conditions are equivalent:

8) Vu, Solpdr ™ (u) A Solyg &% (u) # 0

b) one of the next conditions is true
b.i): dy —my <6 <dp <0 — pr +myp,dp —my < 8p <dp <Op — pyp +my;
b.i): dp —mp + pr <6, <dy —my < dp,df —my+py <605 <d, —m, <dy;
b.iii): dy —my <6, <dp, —my +pp <dp,dp —m, < 3§y < dy —my + py < dy;
b.iv): §, <dy —my <6 +my — pr < dp, 8p < dp —my < 6p +myp — py < dy.



237

Remark 18. The equivalent conditions from Theorem 17 are of consistency of BRIDC, they are
stronger than CC (of BDC) and weaker than (see the hypothesis 6, > 8y — pug,0f > 6 — pir from
Theorem 1)

dy —my < op —py <op < d,

d, —m, S‘sr_,ur S(Sf Sdf

Theorem 19. Let 0 < m, < d,,0 < my < dy so that CC is fulfilled and v € S arbitrary. The next
statements are equivalent:

a) x € Solggér’mf’df (u) A Solg;gr’mf’df (u);
b)

2(t—0) - z(t) = z(t - 0) - N u(é);

§€[t—dr t—drt+m;]

z(t —0) - z(t) = x(t - 0) - N u (§).

E€t—ds t—ds+my]

Theorem 20. Any of the previous equivalent conditions defines a deterministic, time invariant, con-
stant DC.

Remark 21. The deterministic situation 19 of BRIDC has as special case I, happening when m, =
my = 0,d, = df = d. On the other hand, the serial connection of the BRIDC’s is not a BRIDC.

We also mention the possibility of replacing the functions N u (), U u(§) by
Eelt—dy t—dr+m,) E€[t—ds,t—ds+my]

N w@, U wu(§)inBDC, the functions (1 x(), (1 =@by N =&, [

Ee[tfdmt) £€[t7df’t) £€[t7t+57’] £€[t7t+5f] £€[t7t+5r) £€[t,t+5f)

in AIC, the functions N u (&) and N wu(@ with ) w(€), N w()in
E€[t—0r,t—0r+p1r] £€[t—0s,t—05+uy] £€[t—dn1) £€[t—dy.t)
RIC etc. and some variants of the previous definitions follow. The last sixz functions are not signals.
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